
Gas Shale: Adsorbed component assessment

Jack Breig **Newfield Exploration**

Outline

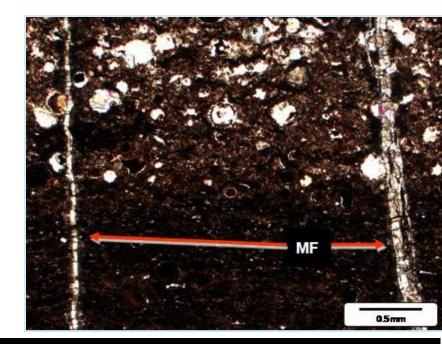
Geological Backdrop Adsorption science Measurement methodology Key parameters for assessment Petrophysical methods for TOC content Source rock maturity & gas composition Methodology to play analysis Sorbed Gas in Place

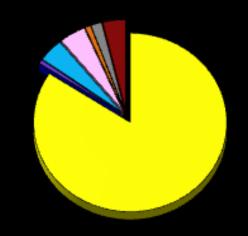
Mississippian-Devonian Black shales

Woodford formation in outcrop

Lightly colored facies caused by biodegradation of organic component of 'shale'

Woodford formation in core

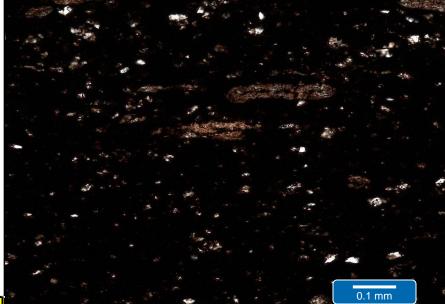


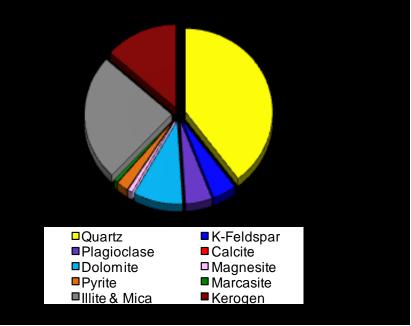

Black color caused by elevated organic carbon component

Woodford: Chert facies

φ = 2.49%	k _e = 5.93E-06 md
Sw = NA	Sg = NA
So = NA	GD = 2.61 g/cc
TOC = 1.70%	Ro = 2.15

Chert Mineralogy (volume %)	Min	Max	Avg
Quartz	63.1	95.4	80.6
K-Feldspar	0.0	1.5	0.1
Plagioclase	0.0	11.6	1.6
Calcite	0.0	0.0	0.0
Dolomite & Fe-Dolomite	0.0	4.9	2.1
Magnesite	0.0	8.7	1.8
Pyrite	0.4	5.1	1.5
Marcasite	0.0	1.3	0.2
Illite & Mica	0.0	21.9	5.4
Kerogen	2.3	13.7	6.7
Vclay	0.0	21.9	5.4



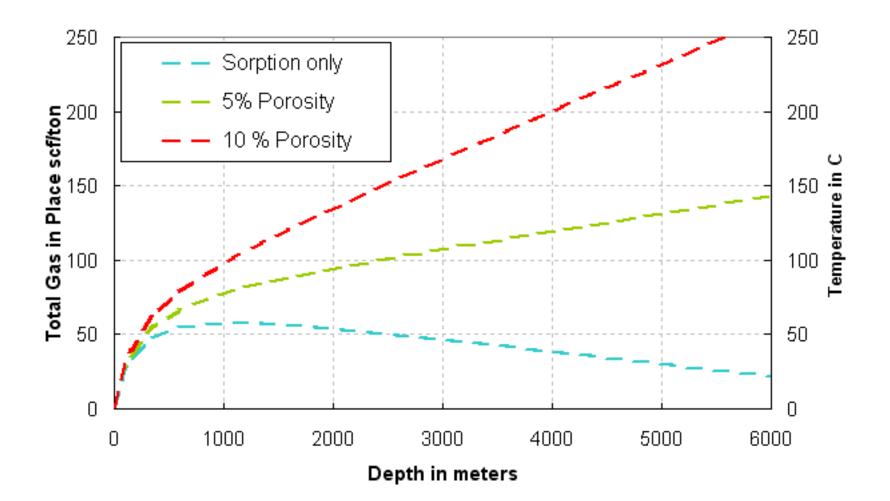

□Quartz	K-Feldspar
Plagioclase	Calcite
Dolomite	Magnesite
Pyrite	Marcasite
■Illite & Mica	Kerogen
	- Nelogen

Woodford: Siliceous mudstone facies

$$\phi = 4.75\% \quad k_e = 8.16E-06 \text{ md} \\ Sw = NA \qquad Sg = NA \\ So = NA \qquad GD = 2.56 \text{ g/cc} \\ TOC = 4.16 wt% \qquad Ro = 2.3$$

			. <u> </u>
Shale Mineralogy (volume %)	Min	Max	Avg
Quartz	25.5	68.5	50.0
K-Feldspar	0.0	5.7	2.3
Plagioclase	1.5	9.9	5.0
Calcite	0.0	14.0	0.7
Dolomite & Fe-Dolomite	0.0	31.8	5.3
Magnesite	0.0	2.6	0.2
Pyrite	1.2	11.4	4.5
Marcasite	0.0	4.9	1.2
Illite & Mica	9.2	35.8	18.7
Kerogen	2.0	18.3	11.9
Vclay	9.2	35.8	18.7

Gas swollen Woodford cuttings bags doubled plastic bags inside cloth bags


Cannister desorption test

Sample	Collection	As-Received	Incremental	Gas	Gas Analysis (O ₂ , N ₂ and H ₂ Mole Fractions Omitted) ¹					
Number	Point	Gas Content	Gas Content ²	C1	C2	C ₃₋ C ₁₀	CO2	Total	Dry	Saturated
	hours	scf/ton	scf/ton	mole %	mole %	mole %	mole %	mole %	Btu/ft ³	Btu/ft ³
Average Depth (ft): 8,132.5			Lost Gas Cor	tent: 38.12%		Woodford Sh	ale			
638-23-1	5.9	59.1	59.1	95.29	4.24	0.38	0.09	100.00	1,052.3	1,034.0
638-23-2	11.7	76.9	17.8	94.34	4.93	0.45	0.28	100.00	1,056.8	1,038.4
638-23-3	22.5	96.6	19.6	91.42	6.91	0.72	0.95	100.00	1,069.6	1,051.0
638-23-4	24.7	98.4	1.8	92.13	7.05	0.74	0.08	100.00	1,080.0	1,061.2
638-23-5	140.2	111.7	13.4	79.78	16.55	2.08	1.59	100.00	1,160.3	1,140.1
638-23-6	400.6	115.4	3.7	67.59	28.33	3.83	0.24	100.00	1,293.8	1,271.3
638 23 7	635.2	116.0	0.6	63.02	0.00	0.00	36.08	100.00	630 /	628.3
638-23-C ⁴	635.2	133.9	17.9	23.63	43.17	22.53	10.66	100.00	1,628.3	1,600.0
Apparent Gas Composition ³			82.60	11.89	3.69	1.82	100.00	1,150.7	1,130.7	
Average De	pth (ft): 8,163	.5		Lost Gas Cor	tent: 11.25%		Woodford Sh	ale		
638 26 1	6.1	15.4	15.4	90.66	6.45	0.38	2.51	100.00	1,043.8	1,025.6
638-26-2	12.0	21.7	6.3	95.70	3.82	0.28	0.20	100.00	1,046.1	1,027.9
638-26-3	22.8	52.6	30.9	91.90	4.85	0.37	2.88	100.00	1,028.4	1,010.5
638-26-4	25.1	54.9	2.3	94.28	4.99	0.38	0.35	100.00	1,055.4	1,037.0
638-26-5	156.9	81.7	26.8	88.53	8.55	0.59	2.33	100.00	1,065.9	1,047.3
<u>638-26-6</u>	401.0	<u>88 9</u>	7.2	82.50	13.68	<u>0 99</u>	2.83	100.00	1 106 5	1 087 2
638-26-7	635.4	91.6	2.7	79.59	16.65	1.27	2.50	100.00	1,137.5	1,117.7
638-26-C ⁴	635.4	114.2	22.5	42.63	45.11	7.13	5.12	100.00	1,425.4	1,400.6
Apparent Ga	as Compositio	on ³		78.73	16.14	2.12	3.01	100.00	1,142.3	1,122.4

Gas Composition Data (Continued)

Note increasing contribution of C2 and C3-C10 as sample desorption proceeds from high to low pressure (collection point time)

Sorbed gas capacity in relationship to free gas

Measurement methodology

- Determine the chemical composition of produced gas
- Derive storage capacity relationships for each chemical species for appropriate ranges of:
 - Temperature
 - Pressure
 - TOC content
 - Source rock maturity

Gas composition examples from western Arkoma Basin (Wet to dry gas transition)

THURMOND-McGLOTHLIN, INC.

THE NATURAL GAS MEASUREMENT COMPANY 501 East Main Street Wilburton, OK 74578 Phone 918-465-2336 Fax 918-465-0013 E-mail joeyw@tm-ems.com Website www.tm-ems.com

DEMADIZO

THURMOND-McGLOTHLIN, INC.

THE NATURAL GAS MEASUREMENT COMPANY 501 East Main Street Wilburton, OK 74578 Phone 918-465-2336 Fax 918-465-0013 E-mail joeyw@tm-ems.com

FRACTIONA	LANALYSIS * ITS MOL		M	DATE RUN:	September 21, 2006	FRACTIONA COMPONEN			PM	DATE RUN:	July 25, 2005
Carbon Dioxi Nitrogen		0.745		COMPANY: PURCHASER: LEASE:	NEWFIELD	Carbon Dioxi Nitrogen	de CO2 N2	1.012		COMPANY: PURCHASER: LEASE:	NEW FIELD
Methane Ethane Propane iso-Butane n-Butane neo-Pentane iso-Pentane n-Pentane Hexane +	C1 C2 C3 IC4 NC4 neo C5 IC5 NC5 C6+	78.181 12.608 4.523 0.382 1.044 0.000 0.223 0.017 0.458 100.000	3.352 1.239 0.124 0.327 0.000 0.081 0.006 0.199	STATION: PRESSURE: TEMPERATURE: CYLINDER: ANALYSIS BY: SECURED BY: DATE SAMPLED: LEGAL:	33 6033 JW DS 9/21/2006	Methane Ethane Propane iso-Butane n-Butane neo-Pentane iso-Pentane n-Pentane Hexane +	C1 C2 C3 IC4 NC4 NC4 IC5 IC5 NC5 C6+	94.288 3.135 0.592 0.064 0.082 0.000 0.022 0.015 0.037 100.000	0.833 0.162 0.021 0.026 0.000 0.008 0.005 0.016	STATION: PRESSURE: TEMPERATURE: CYLINDER: ANALYSIS BY: SECURED BY: DATE SAMPLED: LEGAL:	241 114 1224 BB LB 7/22/2005

GASOLINE CONTENT @ 14.65 PSIA & 60 F	REMARKS:		
GPM		GASOLINE CONTENT @ 14.65 PSIA & 60 F	REMARKS:
PROPANE & HEAVIER 1.777 BUTANE & HEAVIER 0.539 PENTANE & HEAVIER 0.087	RESULTS TO:	GPM PROPANE & HEAVIER 0.22 BUTANE & HEAVIER 0.00 PENTANE & HEAVIER 0.01	80
Gross Heating Value BTU @ 14.65 PSIA & 60 F-REAL Dry 1206.3 Wet 1185.3	NEWFIELD	Gross Heating Value BTU @ 14.65 PSIA & 60 F	RESULTS TO: NEW FIELD
SPECIFIC GRAVITY- REAL Z= 0.9966691 0.7134		Dry 1027.6 Wet 1009.7	
MOL WEIGHT 24.56		SPECIFIC GRAVITY 0.5917	

Western margin of gas play

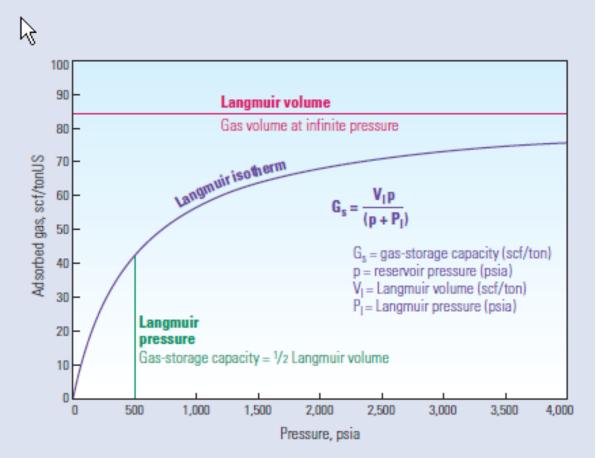
CACOLINE CONTENT O 14 REDOLA & RD E

Core area of gas play

Gas composition examples from eastern Arkoma Basin (elevated CO₂)

THURMOND-McGLOTHLIN, INC.

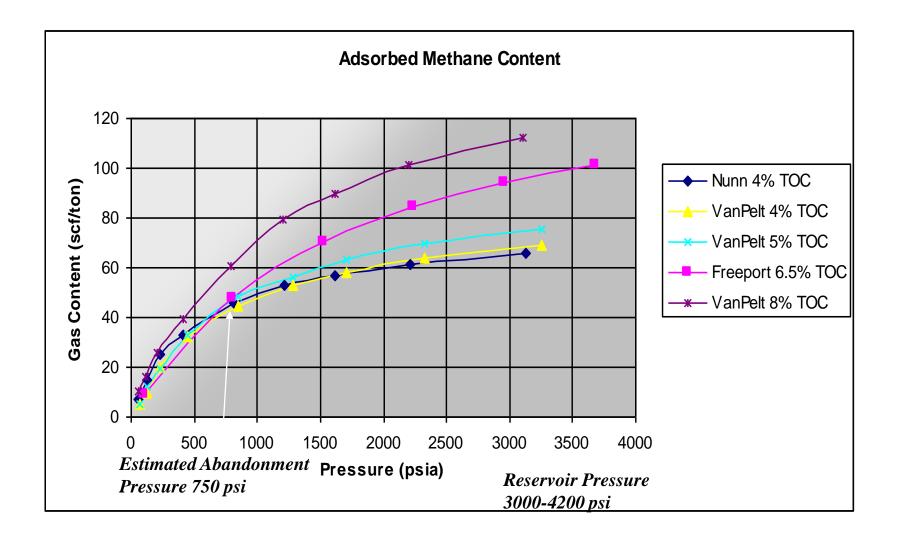
THE NATURAL GAS MEASUREMENT COMPANY 501 East Main Street Wilburton, OK 74578 Phone 918-465-2336 Fax 918-465-0013 E-mail joeyw@tm-ems.com Website www.tm-ems.com


THURMOND-McGLOTHLIN, INC.

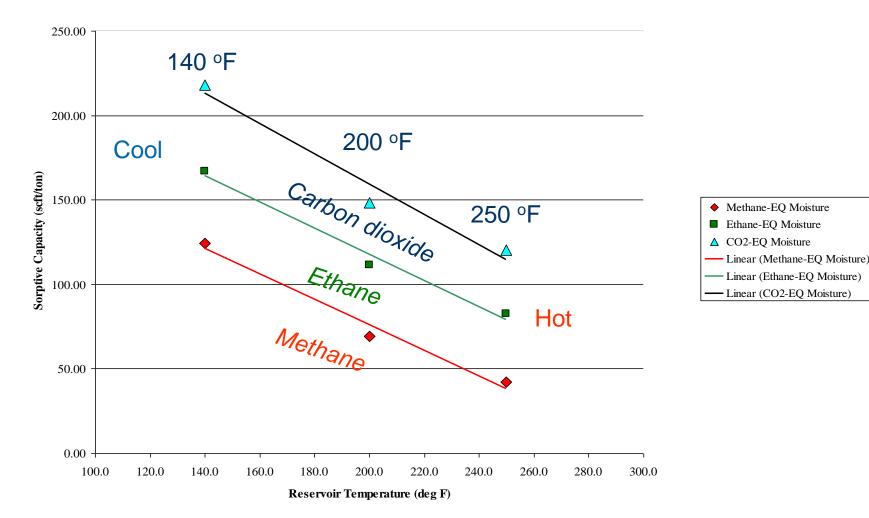
THE NATURAL GAS MEASUREMENT COMPANY 501 East Main Street Wilburton, OK 74578 Phone 918-465-2336 Fax 918-465-0013 E-mail joeyw@tm-ems.com Website www.tm-ems.com

FRACTIONAL ANALYSIS * COMPONENTS MOL %	GPM	DATE RUN:	September 21, 2006	FRACTIONAL ANALYSIS * COMPONENTS MOL %	GPM	DATE RUN:	October 23, 2006
Nitrogen N2 1 Methane C1 78 Ethane C2 12 Propane C3 4 iso-Butane IC4 0 n-Butane NC4 1 neo-Pentane NC4 1 neo-Pentane IC5 0 n-Pentane NC5 0 Hexane + C6+ 0	0.382 0.124 0.044 0.327 0.000 0.000 0.223 0.081	PURCHASER: LEASE: STATION: PRESSURE: TEMPERATURE: CYLINDER: ANALYSIS BY: SECURED BY: DATE SAMPLED: LEGAL:	CATTLE 1 H-21 33 6033 JW DS 9/21/2006	Ethane C2 Propane C3 iso-Butane IC4 n-Butane NC4 neo-Pentane neo C5 iso-Pentane IC5 n-Pentane NC5 Hexane + C6+	5.842 0.558 93.342 0.028 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	PURCHASER: LEASE: STATION: PRESSURE: TEMPERATURE: CYLINDER: ANALYSIS BY: SECURED BY: DATE SAMPLED: LEGAL:	JOHNSTON 3-24 683 102.9 5376 JW DS 10/23/2006
GASOLINE CONTENT @ 14.65 F	PSIA & 60 F	REMARKS:		GASOLINE CONTENT @ 14.6	35 PSIA & 60 F	REMARKS:	
	GPM 1.777 0.539 0.087 206.3 85.3	RESULTS TO: NEWFIELD		PROPANE & HEAVIER BUTANE & HEAVIER PENTANE & HEAVIER Gross Heating Value BTU @ 14.65 PSIA & 60 F-RE Dry Wet	GPM 0.007 0.000 0.000 XL 950.1 933.6	RESULTS TO: NEW FIELD	
SPECIFIC GRAVITY- REAL 0.7134 MOL WEIGHT 24.56	Z= 0.9966691			SPECIFIC GRAVITY- REAL 0.8144 MOL WEIGHT 20.43	Z= 0.9978636		

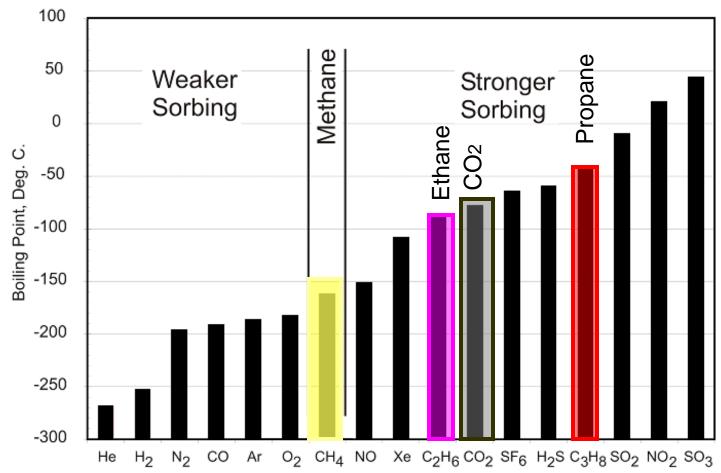
Little CO2 in western areas of gas play. This increases to > 10% in the deeper central parts of the basin. CO2 can reach 75% in the south side of Red Oak field, where VRo reaches 5.0.


The Langmuir Isotherm

^ Adsorbed gas storage. The Langmuir isotherm (blue) shows the quantity of adsorbed gas that a saturated sample will contain at a given pressure. Decreasing pressure will cause the methane to desorb in accordance with behavior prescribed by the blue line. Gas desorption increases in a nonlinear manner as the pressure declines. Thus, in this example, a sample at 3,500-psi [24.2-MPa] pressure will have about 74 scf/ton adsorbed methane. As pressure first decreases from this point, the amount of gas desorbed is relatively small. Once the pressure has declined to 500 psi [3.4 MPa], one-half of the total gas that this shale could adsorb will have been desorbed. The remaining volume will desorb over the final 500 psi.

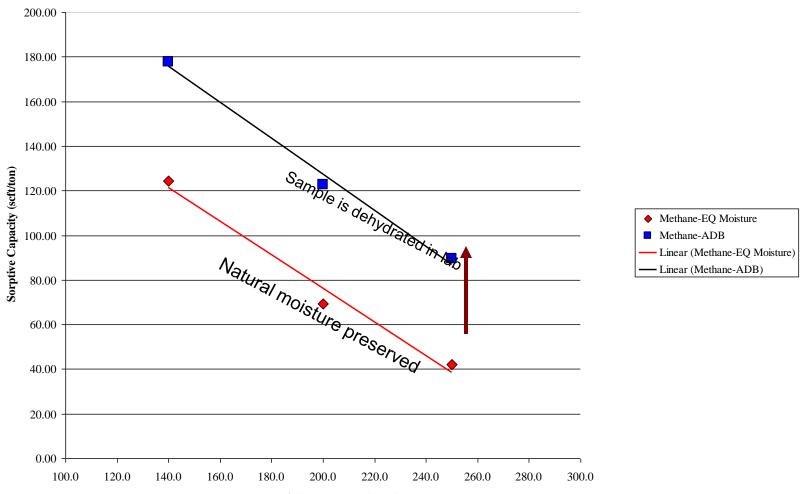

Adsorbed Gas Content

experimentally determined from core samples



Sorptive capacity of methane, ethane, and CO2 at 3 temperatures

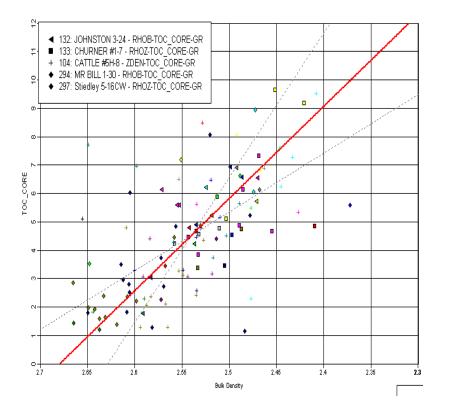
Sorptive Capacity at 4660 psi vs. Reservoir Temperature: Methane, Ethane, CO₂



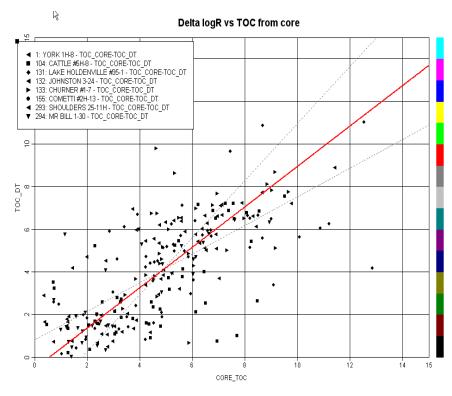
Adsorption tendency in relationship to Fluid boiling point

Sorptive capacity of methane in moisture equilibrated and dried samples

Sorptive Capacity at 4660 psi vs. Reservoir Temperature: Methane

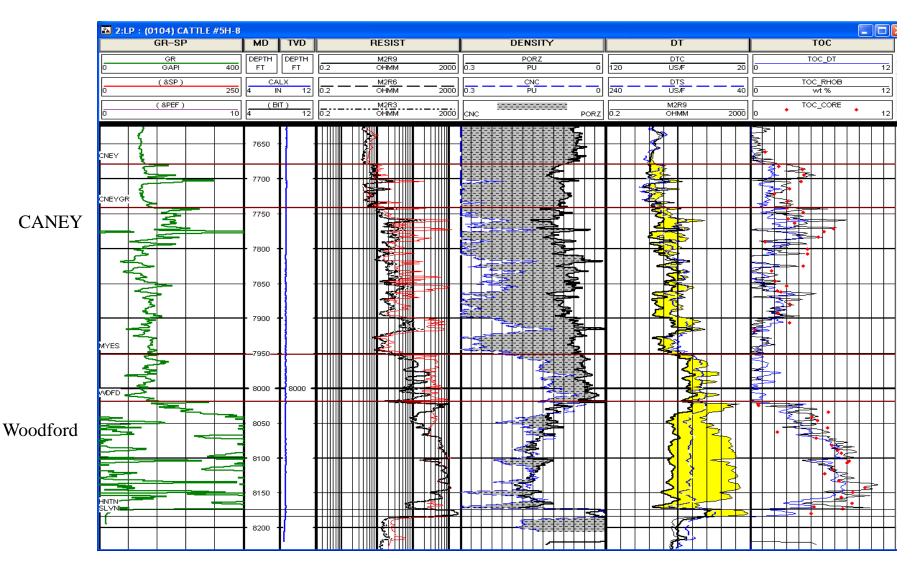


Reservoir Temperature (deg F)

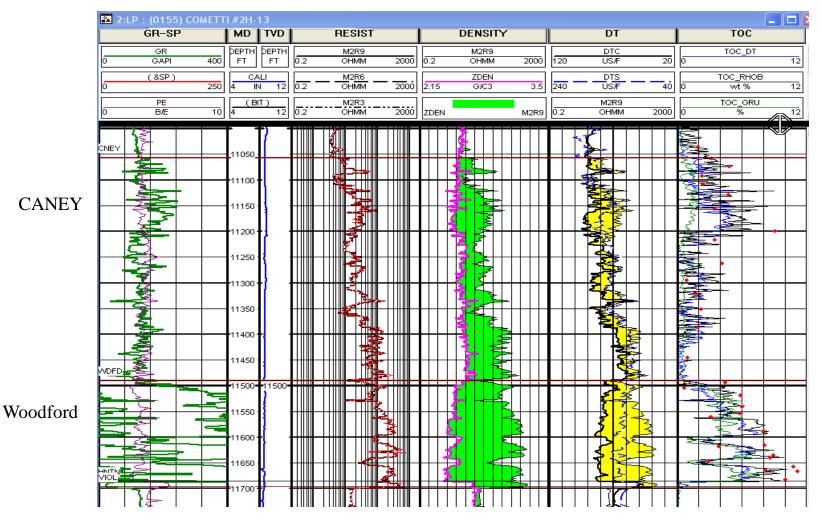

Key Parameters for assessment

- Map of Organic matter content
- Maps of reservoir temperature and pressure
- Map(s) of free gas composition
- Component storage capacity relationship, as specified in extended Langmuir isotherm relationships

TOC estimation from RHOB and DeltaT-log(Rt) Caney & Woodford shales

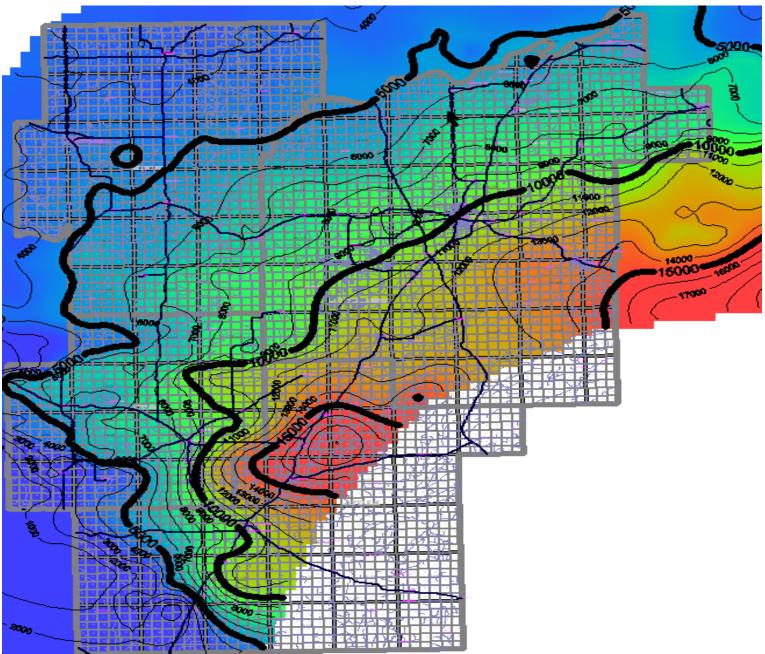

TOC = 87. - 34.5 * RHOBCorrelation Coefficient: r-square = 0.40

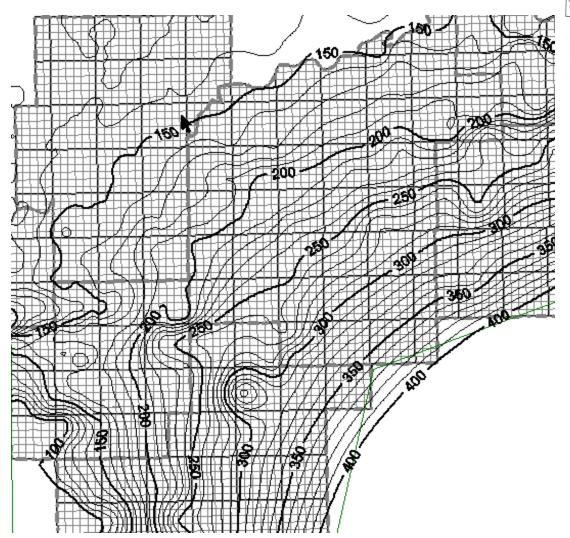
20 Aug 2008 @ 17:40

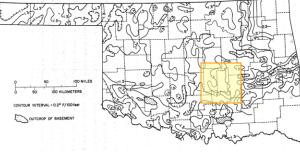

Regression :TOC = .82 * X - .57Correlation Coefficients:r-square = 0.50

Newfield 5H-8 Cattle TOC is approximated by petrophysical techniques

Calculated TOC curves from Density (black) and DTlogR (blue) are calibrated to core TOC measurements (red points);

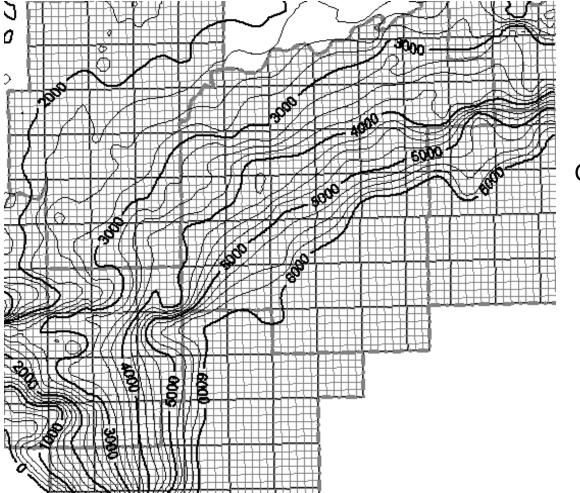

NFX 2H-13 Cometti TOC is approximated by multiple techniques

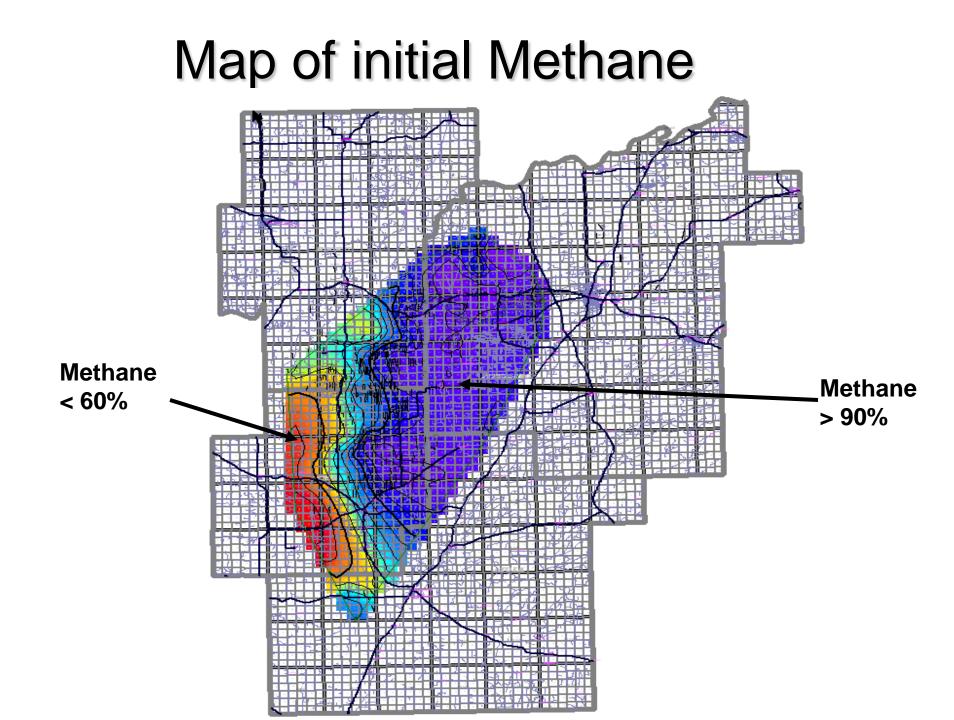

Calibration: Goddard shale (top of picture) (TOC = 0%). Limestone & sandstone units excluded from evaluation.

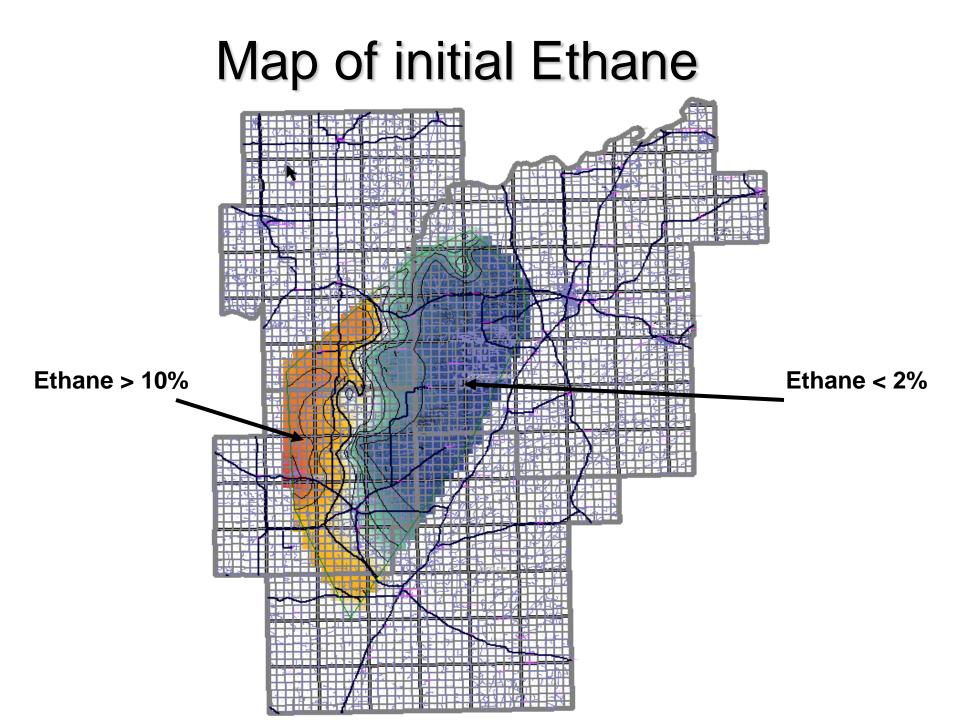

Calculated TOC curves are calibrated to core TOC measurements (red points);

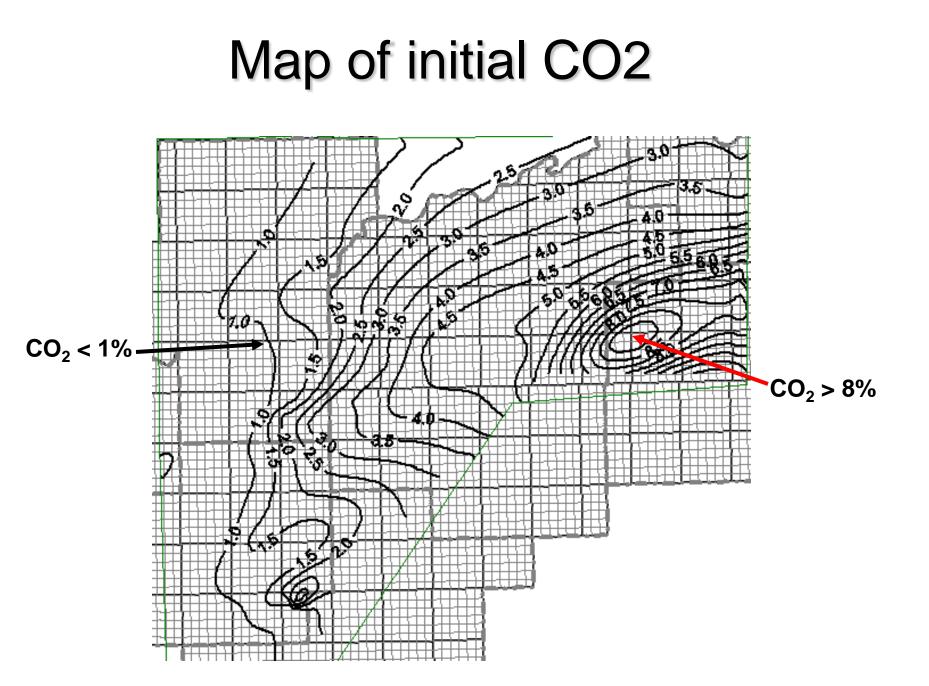
Woodford structure

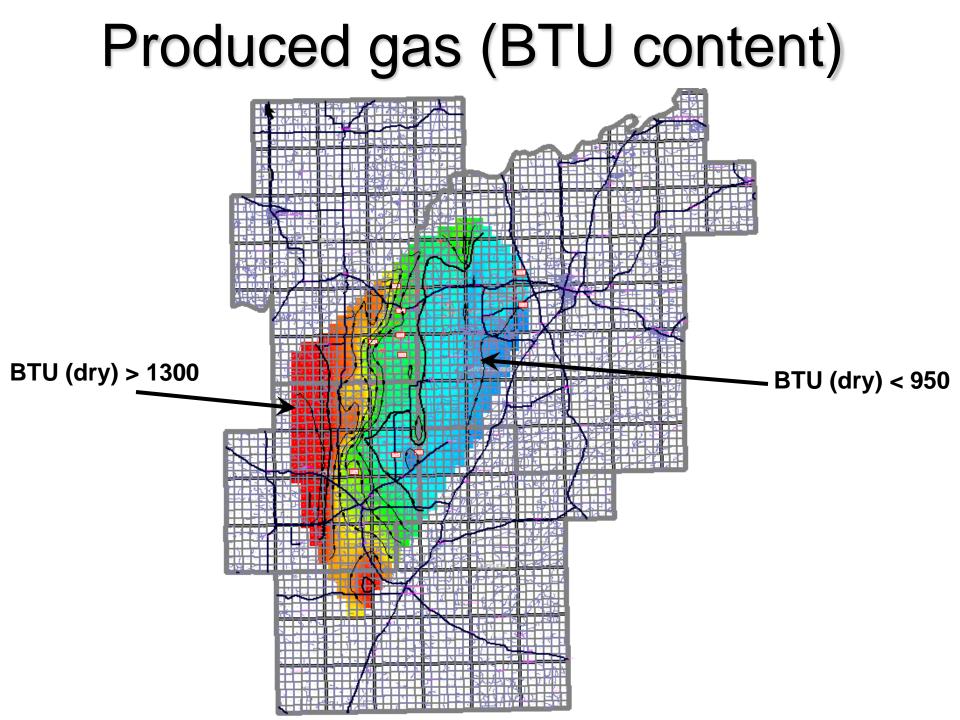
Woodford Temperature map



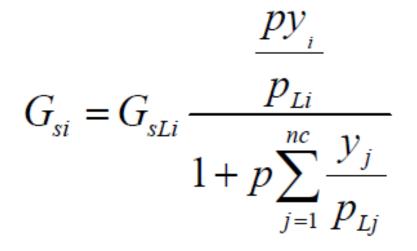

sothermal gradient map of Oklahoma (modified from

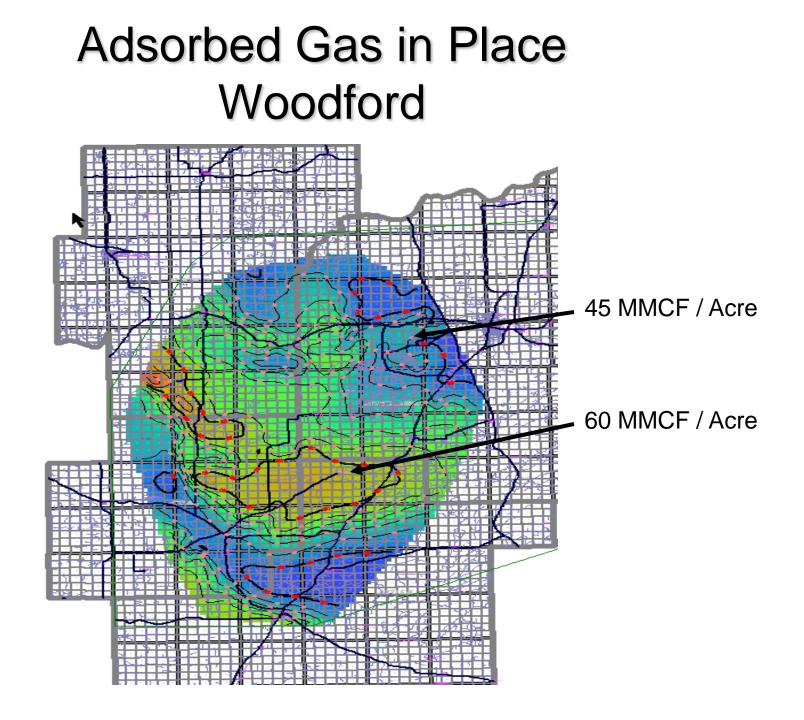

Geothermal gradient of 1.3 – 1.5 deg F / 100 ft. Mean surface temperature is 72 deg F across study area.


Woodford Pressure map



Geopressure Gradient: .47 psi / ft (TVD)

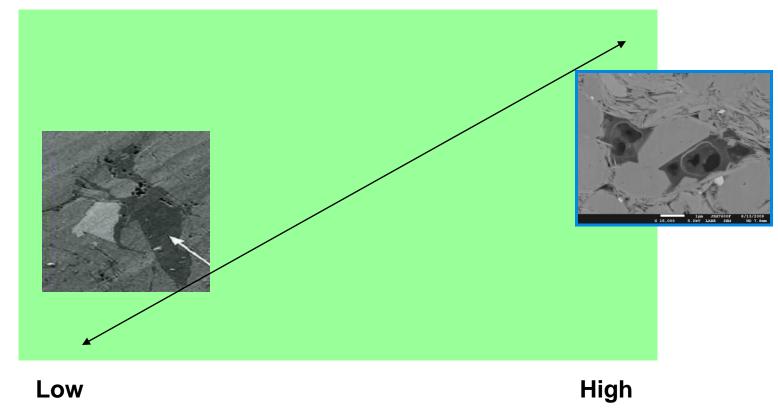



Extended Langmuir relationship

Multi-component isotherm relationships can be computed from single component data by use of extended Langmuir theory.

where:

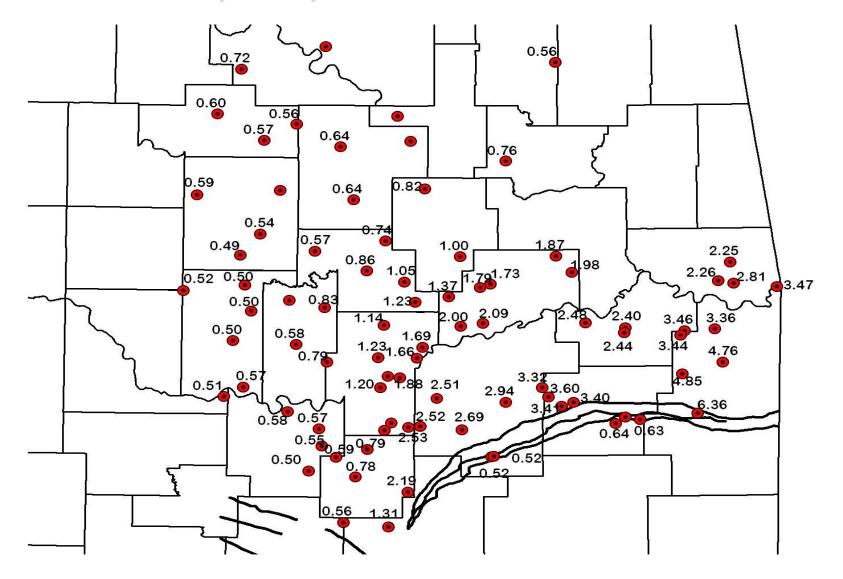
Gsi multi-component storage capacity of component i, scf/ton GsLi single component Langmuir storage capacity of component i, scf/ton pLi, pLj single component Langmuir pressure of component i or j, psia yi or yj mole fraction of component i or j in the free gas (vapor) phase, dimensionless nc number of components p pressure of the free gas phase, psia


Acknowledgements

Significant contributions are recognized by:

- > Ciro Perez (Newfield Exploration)
- > Brian Cardott (OGS)
- > Randy Miller (Core Laboratories)
- The staffs of Weatherford Geochemical group (Humble Geochem & Ticora),

Marc Bustin


Kerogen adsorptive capacity related to thermal maturation

Effective surface area of Kerogen, based on observed nanoporosity level, using Field Emission SEM on Argon milled samples)

THIS IS STILL IN RESEARCH

Thermal maturity of Woodford Fm. organic matter (VRo) – western Arkoma Basin

