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1-2 m thick Parasequences
in Mudstones

Luman Tongue, Hiawatha Section, Green River Basin, WY
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Physiographic Setting of
Organic-Rich Mudstones
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TOC versus Total Porosity
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Porosity versus Gas-filled
Porosity in Shale Gas Reservo
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TOC wt% = TOC vol% 3 fN/v
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Hypothetical Distribution
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Summary e e N

* Production, destruction, and dilution control TOC in mudstones
* Parasequence is the fundamental unit of shale gas reservoirs

* Shale-gas reservoirs are overmature oil-prone source rocks

e Porosity, TOC, and gas content are all positively correlated

* Shale-gas reservoirs comprise a large range in matrix lithologies
e Laboratory characterization of ¢, k, and Sg is problematic

* Free gas likely to be in organic-matter porosity

* Gas-filled porosity (BVG) is better characterization term than Sg
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Abstract

Many currently producing shale-gas reservoirs are overmature oil-prone source rocks. Through burial and heating these reserveirs
evolve from organic-matter-rich mud deposited in marine. lacustrine. or swamp environments. Key characterization parameters
are: total organic carbon (TOC), maturity level (vitrinite reflectance). mineralogy. thickness, and organic matter type. Hydrogen-
to-carbon (HI) and oxvgen-to-carbon (OI) ratios are used to classify organic matter that ranges from oil-prone algal and
herbaceous to gas-prone woody/coaly material

Although organic-matter-rich intervals can be hundreds of meters thick, vertical variability in TOC is high (<1-3 meters) and is
centrolled by stratigraphic and biotic factors. In general, the fundamental geologic building block of shale-gas reservoirs s the
parasequence, and commenly 10°s to 100’s of parasequences comprise the organic-rich formation whose lateral continuity can be
estimated using techniques and models developed for source rocks.

Typical analysis techniques for shale-gas reservoir rocks include: TOC, Xeray diffraction, adsorbed/canister gas, vitrinite
reflectance. detailed core and thin-section descriptions. porosity. permeability. fluid saturation. and optical and electron
microscopy. These sample-based results are combined with full well-log suites. including high reselution density and resistivity
logs and borehole images, to fully characterize these formations. Porosify. fluid saturation. and permeability derived from core can
be tied to log response; however, several studies have shown that the results obtained from different core analysis laboratories can
vary significantly. reflecting differences in analytical technique, differences in definitions of fundamental rock and fluid properties,
or the millimeter-scale variability common in mudstones that make it problematic to select multiple samples with identical
attributes_

Porosity determination in shale-gas nmdstones is complicated by very small pore sizes and. thus, large surface area (and associated
surface water); moreover, smectitic clays that are commeonly present in mud have interlayer water, but this clay family tends to be
minimized in high maturity formations due to illitization. Finally, SEM images of ion-beam-milled samples reveal a separate nano-
porosity system contained within the organic matter, possibly comprising =50% of the total porosity, and these pores may be
hydrocarbon wet, at least during most of the thermal maturation process. A full understanding of the relation of porosity and gas
content will result in development of optimized processes for hydrocarbon recovery in shale-gas reservoirs.

Intreduction/Background

The term “unconventional reservoirs” covers a wide range of hydrocarbon-bearing formations and reservoir fypes that generally do
not produce economic rates of hydrocarbons without stimulation. Common terms for such “unconventional™ reservoirs include:
Tight-Gas Sandstones, Gas Hydrates, Oil Shale formations, Heavy Oil Sandstones. and Shale Gas, among others. The focus of this
paper is to discuss the geological genesis and characterization of the class of “unconventional” reservoirs commonly termed Shale
Gas.

Shale is a term that has been applied to describe a wide variety of rocks that are composed of extremely fine-grained particles,
typically less than 4 microns in diameter. but may contain variable amounts of silt-size particles (up to 62.5 microns). In
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