

Rock Typing in Gas Shales

Chandra S. Rai & Carl H. Sondergeld

Mewbourne School of Petroleum & Geological Engineering University of Oklahoma

OGS Shale Workshop July 28, 2010

Objective:

To identify, using petrophysical measurements, zones in gas shales that would be best for production.

Questions?

- Where should we land the laterals?
- Which zones are best for fracturing?
- How much vertical section are we producing from?

Rock Type

- ...units of rock deposited under similar conditions which experienced similar diagenetic process resulting in a unique porosity-permeability relationship, capillary pressure profile and water saturation
 - G. E. Archie, 1950

Measurements:

- Porosity
- Mineralogy
- Mercury Injection capillary pressure
- SEM studies
- Total organic carbon
- Permeability
- Nuclear Magnetic Resonance
- Compressional & Shear wave velocities
- Elastic Moduli
- Anisotropy
- Fracture Conductivity studies
- Micro-seismic studies

Measurements:

- ~1600 feet of core from four wells from Fort Worth Basin
- Porosity, Mineralogy and TOC on ~800 plugs
- Mercury Injection on ~ 150 plugs

Porosity distribution in Well A, mean=6.1%

FTIR Mineralogy for Samples from Two Wells

Comparison of Upper & Lower Barnett Mineralogy in Well A

Microstructural Studies -SEM

- Fractured surfaces show properties such as bedding planes and crystal habits
- However, fractured surfaces hide the nature of pores
- Polished surfaces show pore morphology
- Ion milling removes polishing artifacts and gives a very low-relief surfaces

Ion-milled Surfaces

FIB Technology for 3-D mapping of the microstructure

mag ⊞ WD mode 1.00 kV 20 000 x 4.1 mm BSF

2-D slices

5 to 6 hundred slices at 10 nanometer intervals

3-D Microstructure

Mineral grains

Where is the Porosity?

Crack
 HV
 mag
 ■
 WD
 mode
 det
 HFW

 1.00 kV 20
 000 x
 4.1 mm
 BSE
 TLD
 6.40 μm
Organic matter

Average Porosity & TOC of Lithofacies

 Siliceous non-calcareous mudstone, 2. Siliceous calcareous mudstone, low calcite, 3. Siliceous calcareous mudstone, high calcite, 4. Silty-Shaly deposits, 5. Phosphatic deposits, 6. Limy mudstone 7. Dolomitic mudstone, 8. Calcareous laminae, 9. Concretions, 10. Fossiliferous deposits, 11. Spicule rich deposits, 12. Debris flow <u>deposits</u>(Singh,2008) Petrotype 1: Lithofacies: 1, 5, 2 (calcite < 10%)

Petrotype 2: Lithofacies: 3,7,8, 10 and 2 (calcite > 10%)

Petrotype 3: Lithofacies 6,9,4,11, and 12

Petrofacies	Lithofacies	Porosity	тос	Calcite	Quartz	Hg Rock Type
1	1, 2, 5	High (6.0 - 6.3%)	High (4.7 - 5.0%)	Low (0 - 10%)	High (28-32%)	A
2	2, 3, 7, 8, 10	High (6.0 - 6.6%)	Moderate (3.4 - 3.8%)	Moderate (10 - 25%)	Medium (18-22%)	В
3	4, 6, 9, 11, 12	Low (2.7 - 3.4%)	Low (1.5 - 2.2%)	High (>25%)	Low (12-16%)	С

Micro-structure

WELL/ TYPE

1

2

JP

SC

Principal Component and Cluster Analysis:

Principal Component and Cluster Analysis:

Clay

Distribution of Petrotypes in Well A:

Distribution of Petrotypes in Well B:

Production data from Wells A & B:

Well Name	Perforated zone thickness, ft	% Net to Gross-pertotype 1	Cumulative prodution-70 months, MCF
A	217	84	628,000
В	542	52	441,000

Conclusions:

- Barnett shale can be classified into three 'petro types".
- Petrotype 1, which is quartz, clay and TOC rich with least amount of calcite likely represents the best reservoir rock.
- Even though the dynamic range of porosity and TOC associated with different petro types is narrow, they differ considerably in terms of calcite content.
- Ion milling reveals the microstructure of shale.
- Porosity is associated within organic matter, mineral grains and grain boundaries.

Acknowledgement:

We thank Devon Energy for funding this project.