

Stimulating Shale Reservoirs – What Have We Learned From Fracture Mapping

Norm Warpinski

Hydraulic fracturing in shales

 Fracturing in shales provides significant information on the shale reservoir

- Natural fractures
- Stress conditions
- Rock properties

 Fracturing in shales has also provided significant information about fracturing mechanisms in complex (naturally fractured) reservoirs

Achieved largely through mapping and tracers

Hydraulic Fracturing

Planar fractures for relatively simple reservoir conditions
 May still have local complexity
 Complex fracture networks in naturally fractured reservoirs
 Particularly with low stress bias

© 2009 Halliburton. All Rights Reserved.

Background – Gas Shale Resources

- Shale reservoirs likely have average matrix permeabilities of 100 – 800 nanodarcys
- Gas will likely flow no more than a few tens of feet in the lifetime of a well
- Economic production and significant volume recovery will require:
 - Large number of wells
 - Closely spaced wells
 - Highly fractured reservoir (Intrinsically or Stimulated)
 - Effective completions
 - Cost, operations, adequately stimulated reservoir volume

Hydraulic Fracture Behavior In Gas Shales

- Initial Barnett slick water fractures
 - Widespread complexity
 - Wide microseismic distribution
 - Asymmetric
 - Linear Features
 - Apparently a very different process than observed previously

Example Simulations: Ultra-Low Permeability

- Simplistic Reservoir Model (e.g., Homogeneous, Uniform, etc.)
- Comparison Of Tight Sandstone Case (Low Permeability) With Gas Shales Cases (Ultra-Low Permeability)
 - Tight Sandstone: Single Fractures From Closely Spaced Vertical Wells (Or Single Horizontal Well)
 - Gas Shale: Orthogonal Network With Limited Conductivities
- Depletion After 3 Months Production

Microseismic Monitoring Background

Offset -Well Microseismic Mapping

Microseisms

What Is It?

- A Microseism Is Literally A Micro-Earthquake. It Is A Shear Slippage Along An Existing Plane Of Weakness.
- Microseisms That Occur During Hydraulic Fracturing Are Caused By:
 - Changes In Stress And Pressure As A Result Of The Treatment
- Excellent Technology For Monitoring Network Fractures

Microseismic locations – waveform back tracing

 Moveout and P-S separation define location (along with velocity structure)

10

 Distance Obtained Primarily From P-S Separation

- Depth Obtained Primarily From Moveout
- Direction Obtained From Wave Particle Motion (Vibration)
 - P-Wave: Always Pointed In Direction Of Wave Propagation (Back To Source)
 - S-Wave: Orthogonal To P Wave

Velocity Model – Microseismic Location

- Determining the velocity structure is the most critical element of microseismic modeling
 - Start with dipole sonic log
 - Good resolution
 - Wrong velocity (vertical)
 - Perforation Timing
 - Obtain shot time
 - Optimization
 - Minimize residuals and location errors
 - Integrate all data

Source Mechanisms

Information on the microseismic activity

- Size & strength
 - Seismic moment
 - $M_o = G A d_s$
 - Magnitude
 - $M_w = 2/3 \{ \log_{10}(M_o) 16.1 \}$
- Orientation from radiation pattern
- Inversion for source mechanisms
 - Fault plane & slip direction
- Spectral analysis for source size and magnitude

Microseismic Viewing Distance

Moment Magnitude Versus Distance Plot

- Viewing Distance
- Biased Data
- Fracture Limits
- Faults
- Clearly shows effect of lithology on viewing distance
- Microseismic Moment
 - Intrinsic strength of the microseism

•
$$M = A d_s G$$

A – area d_s – slippage distance G – shear modulus

 Obtained from the shear-wave amplitude and distance

Examples

The Treatment Matters Barnett Shale Longitudinal Gel Frac Versus Waterfrac

Gas Production

 Waterfrac Significantly Outperformed Gel Stimulation
 SRV: 430 vs 1,450 million ft³

> Factor Of 2 Production Increase

Structures In WaterFracs

18

Structures Are A **Clear Sign Of** Network **Behavior Killed Wells Illustrate That** Fracture Lengths & **Networks Can** Exceed Microseismic Dimensions

GMX Haynesville Map

Haynesville

- GMX Fracture Treatment
- 3,000 5,000 ft Laterals
- ■7 10 Stages
 - 300 ft Spacing
 - 2 Perf Clustes / Stage
- Stimulation
 - 8,000 12,000 bbl / Stage
 - 65 bpm Rate
 - 270,000 lb Proppant / Stage
 - Slickwater, Hybrid, & X Link

SPE 12507 GMX Resources

Marcellus Microseismic Map

SPE 242783, Curry et al, 2010

© 2009 Halliburton. All Rights Reserved.

Stimulated Reservoir Volume

Volume Of Reservoir Rock Stimulated

 Relationship Between Total Volume Stimulated (Microseismic Activity) And Production

SRV vs. 6-month Average

Assessing Fracture Behavior

SPE 119896 (Rimrock)

Simultaneous Fracturing Results

- Typically More Microseismic Activity
- Overlapping Microseismic Behavior
- Still See General Fracturing Behavior

22

Microseismic Interpretation

Fracture complexity

- Due to interest in gas shales, complexity is a key parameter
- Can we determine when a fracture treatment results in a complex network

Factors?

- In Situ Stress Bias
- Natural Fractures
- Brittleness
- Treatment
- Completion

Fracture Complexity Index Chart

Using Diagnostic Data

- Well Layout
- Well Spacing
- Horizontal Well Staging
- SRV Calculations
- Missed Reserves
- Height Growth
- Reservoir engineering

Hydraulic fracturing versus the environment: what do diagnostics say?

Fractures are far from mapped aquifers

Hydraulic fracturing vs the environment: what do diagnostics say?

- Marcellus issues?
 - More height growth than Barnett

 Far from mapped aquifers

Conclusions

 Microseismic monitoring is probably the only way to evaluate details of stimulation & completion results in shale reservoirs

- Height growth
- Network development & fracturing intensity
- Stimulated reservoir volume
- Staging tools
- Completion & stimulation approaches
 - Perforation clustering
 - Simultaneous fracturing