Transformative Technology
Impacting Traditional Energy
Systems



C. Michael Ming
Shales Moving Forward
Oklahoma Geological Survey
Norman, Oklahoma
July 21, 2011

#### Designing An Optimal Energy System

- Begin With Traditional Fuels At Scale
- Determine System Constraints & Establish Objectives
- Maximize Efficiency
- Synergistically Add Renewables
- Make The System Smart, Very Smart
- Simultaneously Continue To Work On Energy Transformations

#### Integration, Not A Silver Bullet, Is The Key Today



#### Getting The Bigger Picture: Ball Bearings





# Optimizing Any Component Can Improve The System





Figure 2.0 Primary Energy Flow by Source and Sector, 2009

(Quadrillion Btu)





Source: EIA, 2009

#### U.S. Energy Consumption by Energy Source, 2009



Note: Sum of components may not equal 100% due to independent rounding. Source: U.S. Energy Information Administration, *Annual Energy Review 2009*, Table 1.3, Primary Energy Consumption by Energy Source, 1949-2009 (August 2010).



### **Exceeding Expectations**



PHOTOGRAPH BY JEFF RIEDEL FOR TIME



#### The U.S. Gas Shale Ramp

- The Barnett grew 3000% from 1998 to 2007
- The Eagle Ford, Fayetteville, Haynesville, Marcellus, and Woodford will dwarf this
- Technology improvements in horizontal drilling and fracturing have economically enabled vast new unconventional and conventional resources.







#### **Natural Gas Demand**

Resilience in gas use across sectors

Potential major growth areas:

#### **Electricity**

- Natural gas substitution for coal
- Intermittent sources/variability & uncertainty

#### **Transportation**

- Long term potential for CNG
- LNG not currently attractive



#### Natural Gas, A 60-year Bridge (At Least)





#### Technology Has Driven The Growth





# Share of U.S. Electric Generation from Coal and Gas, 1990-2009





### Designing Smarter, Flexible & Efficient Solutions





### Natural Gas is the Least Cost Option for New Power Generation





#### Comparative Efficiency By Sector





#### Efficiency Must Start At The Point Of Conversion





#### An Optimal Energy System Lowers Emissions



| Emission I                             | Levels: | Natural | Gas | VS. | Oil | & Coal |  |
|----------------------------------------|---------|---------|-----|-----|-----|--------|--|
| Pounds per Rillion Rty of Epergy Input |         |         |     |     |     |        |  |

| POLLUTANT       | NATURAL GAS | OIL     | COAL    |
|-----------------|-------------|---------|---------|
| CARBON DIOXIDE  | 117,000     | 164,000 | 208,000 |
| CARBON MONOXIDE | 40          | 33      | 208     |
| NITROGEN OXIDES | 92          | 448     | 457     |
| SULFUR DIOXIDE  | 1           | 1,122   | 2,591   |
| PARTICULATES    | 7           | 84      | 2,744   |
| MERCURY         | 0.000       | 0.007   | 0.016   |



At minimum a 60% reduction in CO<sub>2</sub> intensity, not even accounting for other potential efficiencies!





### New Supplies Are Fueling New Demands





#### The Resurgence Of US Oil?





#### The Catalyst: Unconventional Gas Technology





#### Reversing The Trend





#### Exponential Growth Of The U.S. Wind Industry





Source: EIA 2009

# In CO & Elsewhere The Wind Blows Most Intensely At Night

#### Wind Blows Strongest Between 9:00 pm & 5:00 am, When Demand Is Weakest





#### Making The System Smarter: Smart Everything







#### **Transformative Technologies**



Hydrogen Economy (Emission Free)



**Nuclear Fusion (No Waste)** 



Mobile Fuel Cells (Reusable)



Advanced Generation Biofuels (Renewable)



Utilizing CO2 For Fuels (CO2 Capture)



# "You miss 100% of the shots you don't take."

Wayne Gretzky michael.ming@doe.ok.gov

