

Natural Gas Assessment of the Arkoma Basin, Ouachita Thrust Belt, and Reelfoot Rift Arkoma Basin Shelf and Deep Basin Plays

Dave Houseknecht

U.S. Department of the Interior

U.S. Geological Survey

Morrowan Series – Thickness & Dominant Lithology

Atokan Series – Thickness & Dominant Lithology

Desmoinesian Series – Thickness & Dominant Lithology

Structural Cross Sections – Southern Arkoma Basin & Ouachitas

Definition of Assessment Units

Arkoma Basin Growth Fault Systems

Approximate location shown by A on subsequent map.

Cross section modified from Roberts, 1994 Fault designations from Houseknecht et al., 1989

Proposed Assessment Units – Shelf-Foredeep Boundary

Approximate location shown by A on subsequent map.

Cross section modified from Roberts, 1994 Fault designations from Houseknecht et al., 1989

Structural Cross Section in Western Arkansas Foredeep-Thrust Belt Boundary

Proposed Assessment Units ARKOMA DEEP BASIN CONVENTIONAL ARKOMA-OUACHITA FOREDEEP CONTINUOUS OUACHITA THRUST BELT ARKOMA SHALLOW - NO RESOURCE POTENTIAL INFERRED

≊USGS

Approximate location shown by **B** on subsequent map. Cro

Cross section modified from Roberts, 2005

Arkoma Shelf Assessment Unit – Key Characteristics

- Mostly structural and structural-stratigraphic traps
- Reservoirs include both sandstone and carbonate strata
 - Basal Atoka (Spiro) & older shelf strata
 - Atoka & Demoinesian foreland-basin strata
- Water legs predominant to common
- Mostly normally pressured; locally under-pressured
- Example fields: Kinta, Altus-Massard trend, Brooken, Quinton, White Oak, Bonanza
- Production histories indicate finite accumulation volumes
- Conventional accumulations
- Maturely explored modest potential for new discoveries of the minimum size (3 BCFG ~ 0.5 MMBO)

Brooken Field – Middle Booch Sandstone

Net sandstone isopach map

0

°00°0 0

T 10 N

9

N

ö

QAa273

g

MC INTOSH MUSKOGEE

0

٥

D

Brooken Field – Stratigraphic Cross Section Booch & Hartshorne Sandstone Facies

Brooken Field – Structural Cross Section *Trapping Fault & Original Gas-Water Contact in*

Kinta Field – Transition from Shelf to Foredeep

Kinta Field Cross Section – Transition in Character of Reservoir & Formation Fluid

Kinta Field Cross Section

Northcutt & Brown, 1994 From Wylie, 1988

Arkoma Deep Basin Conventional Assessment Unit – Key Characteristics

- Mostly structural and structural-stratigraphic traps
- Reservoirs include both sandstone and carbonate strata
 - Basal Atoka (Spiro) & older shelf strata
 - Arbuckle Group considered oldest potential reservoir
- Evidence that accumulations are discrete
 - Water legs present in west (lowest thermal maturity)
 - "Fossil" water legs present elsewhere
- Normal or abnormal (both over & under) pressured
- Example fields: Wilburton deep, Red Oak deep, Caulksville deep
- Production histories indicate finite accumulation volumes
- Assessed as conventional accumulations
- Moderately explored potential for new discoveries of the minimum size (3 BCFG ~ 0.5 MMBO)

Wilburton Field – Cross Section Showing Water Leg in Arbuckle Reservoir

Mescher and others, 1993

Thermal Maturity of Spiro Horizon – Wilburton and Red Oak Fields

Arkoma Basin – Seismic Expression & Spiro Structure in Red Oak Field

Spiro Diagenesis in Red Oak Field – "Fossil" Water Leg

≊USGS

Houseknecht & McGilvery, 1990; Houseknecht & Spőtl, 1993; Spőtl et al., 1994, 1996, 2000

Arkoma-Ouachita Foredeep Continuous Assessment Unit – Key Characteristics

- Vast, gas-saturated volume strong stratigraphic component
- Reservoirs are mostly low P&P sandstone
- Little or no free water; no water legs; no "fossil" water legs
- Abnormal pressure common (over > under)
- Example fields: lower-middle Atoka reservoirs in Red Oak, Wilburton, Gragg, Witcherville, Booneville, Panola, Chismville, Waveland, Rich Mountain
- Sweet spots defined by channelized sandstone facies & local fracture-enhancement of permeability
- Production histories indicate vast & non-discrete accumulation volumes
- To be assessed as continuous, basin-centered accumulation with tight sandstone reservoirs
- Maturely explored as conventional accumulations on structure
- Moderately developed as *continuous accumulation* significant potential for reserve additions off structure
- Resource play!

Arkoma Base Map – Distribution of Major Growth Fault Systems

≊USGS

Houseknecht, 1986; McGilvery & Houseknecht, 2000

Generalized Cross Section of Atokan "Growth Faults" in Oklahoma

Houseknecht & Ross, 1992; McGilvery & Houseknecht, 2000

Middle Atoka Depositional Model

Washburn Anticline – Structure Map, Top Upper Borum Sandstone

Gragg-Witcherville, Booneville, Chismville, Rich Mountain "fields"

Washburn Anticline – Cross Section

Washburn Anticline – Composite Log & Rich Mtn. Type Log

Rich Mountain Field – Development of Continuous, Basin-Centered Gas with Tight Sandstone Reservoirs - Are Horizontal Well Completions the Future?

From SEECO submission to Arkansas O&G Comm., Nov. 2008

Petrofacies and Reservoir Quality in Atoka Sandstones

The presence, volume, and distribution of clays – many emplaced during or immediately following deposition – significantly influenced diagenesis and represent a primary control of reservoir quality.

Houseknecht, 1987; Houseknecht & McGilvery, 1990; Houseknecht & Ross, 1992; McGilvery and Houseknecht, 2000

