

Seismic Expression of Shale Reservoirs Opportunities for Technology Improvement

Kurt J. Marfurt (University of Oklahoma)

Outline

Review of workflows useful in the Barnett Shale

- Volumetric attributes
- Basement control of faulting and collapse
- Velocity anisotropy analysis
- Azimuthal AVO analysis
- Improved lateral resolution through innovative migration

Some flash images of preliminary application of these techniques to the Woodford Shale

Outline

Review of workflows useful in the Barnett Shale

- Volumetric attributes
- Basement control of faulting and collapse
- Velocity anisotropy analysis
- Azimuthal AVO analysis
- Improved lateral resolution through innovative migration

Some flash images of preliminary application of these techniques to the Woodford Shale

Structural components of the Fort Worth Basin

Magnetic tilt derivative map

(Pollastro, 2007) (Baruch et al., 2009)

Time-Structure Maps of Shale Sequencies

With fault interpretation

Faults and Fracture distribution within a Paleocave Collapse

Ellenburger Group

Ant Tracking over Variance

Curvature on Viola Limestone

Curvature lineaments at each horizon

GEOLOGY BACKGROUND

Outline

Review of workflows useful in the Barnett Shale

- Volumetric attributes
- Basement control of faulting and collapse
- Velocity anisotropy analysis
- Azimuthal AVO analysis
- Improved lateral resolution through innovative migration

Some flash images of preliminary application of these techniques to the Woodford Shale

Induced fractures versus expected ultimate recovery (E.U.R.)

2000 ft

Micro-Seismic studies suggest that large E.U.R. depends on creation (by hydrofractures) of large network of multi-azimuth vertical fractures

Acoustic log

Resistivity log

Drilling-induced fractures show that the main present-day stress field is N45E.

τO

Most pre-existing natural fractures are oriented N50W.

¹25 %

Azimuthal velocity anisotropy vs. induced fractures (Fort Worth Basin, Texas, USA)

Poor well (fractures parallel)

Azimuthal velocity anisotropy vs. induced fractures (Fort Worth Basin, Texas, USA)

Good well (orthogonal fracture sets)

0.5 km

1 km

Azimuthal velocity anisotropy vs. most positive curvature (Fort Worth Basin, Texas, USA)

Curvature and microseismic?

Minimum Stress Direction Map of Microseismic events

Outline

Review of workflows useful in the Barnett Shale

- Volumetric attributes
- Basement control of faulting and collapse
- Velocity anisotropy analysis
- Azimuthal AVO analysis
- Improved lateral resolution through innovative migration

Some flash images of preliminary application of these techniques to the Woodford Shale

Azimuthal AVO:

~ 75 Square miles

16 receiver lines, 98 channels each, 21,750 SPs (290 / sq mi) 29,100 Rcvr Stns (388 /sq mi) 30 fold

Acquisition parameters

6 sectors 250 ft offset classes sector fold of 20 110 by 110 ft bins

13% empty bins

Spider plots

Stacked azimuth sector gathers

Anisotropy indicators

6 Migrated Sectors:

Anisotropy indicators NOTE differences in amplitude and imaging 0.5 ms 0.5 ms 0.5 ms 1.0 ms

6 Migrated Sectors:

NOTE differences in amplitude and imaging

(Roende et al., 2008)

Prestack azimuth sectors

AVOZ analysis

Azimuth

AVOZ Resulting maps

Outline

Review of workflows useful in the Barnett Shale

- Volumetric attributes
- Basement control of faulting and collapse
- Velocity anisotropy analysis
- Azimuthal AVO analysis
- Improved lateral resolution through innovative migration

Some flash images of preliminary application of these techniques to the Woodford Shale

Coherence applied to Azimuthally-Limited Volumes

All-azimuth volumemited-azimuth volume

Time slices at 1.514 s

Azimuthal Binning to Better Image Fractures

Kirchhoff migration

Azimuthal Binning: Source-receiver azimuth = NW-SE

Azimuthal Binning: Source-receiver azimuth = NNE-SSW

Conventional Azimuthal Binning

Data slices at t = 1.24 s

New Azimuthal Binning

Data slices at t = 1.24 s

Conventional Azimuthal Binning

New Azimuthal Binning

Conventional Azimuthal Binning

Kneg slices at t = 1.36 s

(Perez and Marfurt, 2008)

New Azimuthal Binning

Kneg slices at t = 1.24 s

Can we predict 'fracability' from λ-μ cross plots of shales?

BARNETT WELLS	Vp	Vs	Rho	Lam	Mu	gr	poisson	EUR
S1	3687	2314	2.47	7.1	13.2	139.72	0.175	53
S2	3812	2358	2.49	8.5	13.8	129.08	0.190	36
S 3	3850	2364	2.49	9.1	13.9	144.42	0.197	30

Can we predict 'fracability' from λ-μ cross plots of shales?

Outline

Review of workflows useful in the Barnett Shale

- Volumetric attributes
- Basement control of faulting and collapse
- Velocity anisotropy analysis
- Azimuthal AVO analysis
- Improved lateral resolution through innovative migration

Some flash images of preliminary application of these techniques to the Woodford Shale

Natural fractures in the Woodford Shale (Wyche shale pit, OK)

Summary

In the core area of the Fort Worth Basin:

- Large fractures and karst can be readily identified by using 3D wide-azimuth seismic volumes; these features often result in production of water from the Ellenberger
- Mapping fractures and karst can be facilitated by coherence and curvature
- Fractures at the target area correlate to those in the Basement
- Minor fractures are almost always healed and have been shown to be correlated to paleo-deformation. Induced fractures preferentially follow the direction of maximum horizontal stress

In other areas:

 Production (EUR) appears to be enhanced by natural fractures seen in curvature

Further development is needed in:

- Correlating surface seismic AVO and AVOA to core and EUR for a wider suite of shale reservoirs
- Improving resolution of anisotropy velocity analysis