Overview of Unconventional Energy Resources of Oklahoma

By Brian J. Cardott (Oklahoma Geological Survey)

Presented at OGS Conference on "Unconventional Energy Resources in the Southern Midcontinent" in Oklahoma City on March 9, 2004

Unconventional Energy Resources of Oklahoma ➢Coalbed Methane ≻Gas Shales >Oil Shales Tight Gas and Ultra-Deep Reservoirs ➢Oil (Tar) Sands

Coalbed methane, gas shales, and tight gas reservoirs are commonly referred to as continuous gas accumulations because they are regionally pervasive and generally not buoyancy-driven accumulations, commonly independent of structural and stratigraphic traps

Non-conventional (or unconventional) fuels that were eligible for tax credits under the Internal Revenue Service Code Section 29 from 1980–2002

- o oil from shale
- o oil from tar sands
- o natural gas from geopressured brine, coal seams, Devonian shale, or tight sands
- o liquid, gaseous, or solid synthetic fuel, including petrochemical feedstocks, (other than alcohol) from coal liquefaction or gasification facilities

Non-conventional (or unconventional) fuels that were eligible for tax credits under the Internal Revenue Service Code Section 29 from 1980–2002

o gas from biomass (including wood)o steam from solid agricultural by-productso qualifying processed solid wood fuels

Coalbed Methane

Gas Shales

Gas shales and oil shales are varieties of hydrocarbon source rocks.

HYDROCARBON SOURCE ROCK CLASSIFICATION

- Organic matter type refers to the kerogen or maceral type and can be lumped into gas generative, oil generative, or inert.
- Organic matter quantity is determined by the total organic carbon (TOC) content (weight percent, whole-rock basis).

Vitrinite reflectance (%Ro, oil immersion) is the most common thermal maturity indicator. Vitrinite is a maceral derived from the woody tissues of vascular plants. The oil window is considered to be from 0.5–1.3% Ro.

Gas Shales

Definition: Gas shales are organic-rich, finegrained sedimentary rocks (shale to siltstone) containing a minimum of 0.5 wt % TOC. Gas shales may be thermally marginallymature (0.4–0.6% Ro) to mature (0.6–2.0% Ro) and contain biogenic to thermogenic methane. Gas is generated and stored in situ in gas shales as both sorbed (on organic matter) and free gas (in fractures and pores), similar to natural gas in coals. As such, gas shales are self-sourced reservoirs. Low-permeable shales require extensive natural fractures to produce commercial quantities of gas.

Gas Shales of the United States

Hydrocarbon Source Rocks of Oklahoma

SYSTEM	PRODUCING	HYDROCARBON- SOURCE ROCK	KEROGEN TYPE	тос %
PERMIAN	PERMIAN (UNDIFFERENTIATED)			
PENNSYLVANIAN	VIRGILIAN DESMOINESIAN	UPPER AND MIDDLE PENNSYLVANIAN	пш	<1-25
	ATOKAN MORROWAN SPRINGER	MORROWAN	ш	0.5-3.4
MISSISSIPPIAN	FORMATION PRE-CHESTER MISSISSIPPIAN (UNDIFFERENTIATED)	WOODFORD	пш	<1-14
	HUNTON GROUP	SHALL		
ORDOVICIAN	SIMPSON GROUP	SYLVAN SIMPSON GROUP	п	<1-9
UPPER CAMBRIAN	ARBUCKLE GROUP		Johnsor	and C

1992

Potential Gas Shales of Oklahoma

FORMATION	TOC (WT %)
Excello Shale (black shale lithofacies)	1-17
Caney Shale	2.02-5.4
Woodford Shale	<1-14

Woodford Shale Stratigraphy

Map of Mature Woodford Shale

Woodford-Only Oil & Gas Leases

24 Woodford-only gas leases 48 Woodford-only oil leases (oil and associated gas)

Woodford Gas
Woodford Oil

Map of oil and gas lease production was generated by Scott March with Geo Information Systems from Natural Resources Information System (NRIS) data files

Woodford Gas Wells

"False" Caney

Andrews, 2003

"False" Caney

Andrews, 2003

Caney Shale TOC Content

- 2.02-4.04% in the Arkoma Basin (16 samples; Hendrick, 1992)
- 4.4-5.4% in the Ouachita Mountains (3 samples; Cardott, 1994)

Caney-Only Gas Leases

• Caney Gas

Map of gas lease production was generated by Geo Information Systems from Natural Resources Information System (NRIS) data files

7 gas-only leases, 1979-9/2003

Caney Gas Wells

Excello Shale Stratigraphy

Ece, 1989

Excello Shale Thermal Maturity

Excello Shale gas production is included with Mulky coalbed-methane production

Oil Shales

"any shallow rock yielding oil in commercial amount upon pyrolysis is considered to be an oil shale"

Tissot and Welte, 1984

Oil Shales

Mudstone, siltstone, marlstone, or carbonate

Cambrian to Tertiary in age

>Thermally immature to mature

Organic-rich (minimum of 5 volume percent types I and II kerogen; not related to TOC)

➢Near surface

Woodford Shale in Arbuckle Mountains

Hunton Quarry

Hycrude (1986) hydroretorting assay test

Woodford Shale Pit

Marginally mature
Surface exposure
Type II kerogen
9.5 wt% TOC

Hycrude (1986) hydroretorting assay test

- Hydroretorting is the heating (>540°C) of shale in a retort under a hydrogenrich atmosphere at elevated pressures (@1,000 psi).
- Evaluated 90 pounds of Woodford Shale

Hycrude (1986) Results

- Fischer Assay oil yield, 8.4 gal/ton
- Raw Shale hydroretorting assay oil yield, 22.9 gal/ton

Highgraded for 120 minutes

- Highgraded Fischer Assay oil yield, 20.3 gal/ton
- Highgraded hydroretorting assay oil yield, 46.8 gal/ton

Tight Gas and Ultra-Deep Reservoirs

"Tight gas sands are low-permeability gasbearing reservoirs (in a variety of rock types) that have an in situ permeability to gas of less than 0.1 md, exclusive of natural fracture permeability. The reservoirs are areally extensive, usually abnormally pressured, and often (but not always) found in basin-center settings"

(Kuuskraa and Bank, 2003)

Tight Gas in the United States

Tight Gas in Oklahoma Anadarko Basin Red Fork Cleveland **Granite Wash** Arkoma Basin **Atoka**

Tight Gas in Oklahoma

The Red Fork play has an average EUR of 2,200-8,800 MMcf/well at a depth of 9,000-13,000 ft, net pay of 7-200 ft, porosity of 1-18%, permeability of 0.1-20 md, and estimated ultimate recoverable of 2,890.6 Bcf.

Prouty, 2001

Tight Gas in Oklahoma

The Cleveland play has an average EUR of 1,000 MMcf/well at a depth of 5,500-12,000 ft, net pay of 6-55 ft, porosity of 3-14%, permeability of 0.001-20 md, and estimated ultimate recoverable of 702.9 Bcf.

Prouty, 2001

Tight Gas in Oklahoma

The Granite Wash play has an average EUR of 1,500 MMcf/well at a depth of 6,500-11,500 ft, net pay of 10-60 ft, porosity of 4-12%, permeability of 0.0009-1.4 md, and estimated ultimate recoverable of 349 Bcf.

Prouty, 2001

Oil (Tar) Sands

"Oil sands (also called tar sands in the U.S.) are sandstones or carbonate strata containing bitumen or other hydrocarbons of such high viscosity as to be immobile under normal reservoir temperatures."

Rottenfusser, 2003

Oil (Tar) Sands

"In order to be utilized, the hydrocarbons must be mined or extracted *in situ* from the rock by the use of heat or solvents."

Rottenfusser, 2003

Petroleum-Impregnated Rocks of Oklahoma

Dougherty Asphalt Quarry

Sulfur Asphalt Quarry

Cardott and Chaplin (1993)

In-Place Bitumen Resource of 46.4 million barrels

Production of bitumen-bearing sandstone > 1.5 million short tons from 1890 to 1962

DSh Group

White silica veins in asphalt- saturated Oil Creek Formation sandstone

Silurian-Devonian

Bitumen-impregnated rock was quarried from the Dougherty and Sulphur districts and taken by true to the crushing, screening, and mixing plant near Dougherty. The blended asphalt product was used as road-paving material. Synthetic crude oil has never been a product of the Oklahoma asphalt deposits.

Geologists with Suncor Energy Inc. (Canada) evaluated the Sulphur oil sand deposit in 1998 as part of a worldwide exploration for oil sand reserves. Brian McKinstry (formerly with Suncor Energy; personal communication June 2003) indicated that the Oklahoma deposits were structurally complex (dipping at steep angles) and had limited bitumen resources for an economic oil sand operation.

Technically Recoverable U.S. Natural Gas Resources as of January 1, 2002 (trillion cubic feet)

www.eia.doe.gov

