

Petroleum Systems

(Part Two)

Trap and Reservoir

**GEOL 4233 Class
January 2008**

Petroleum System Summary

- **Source (Material and Rocks)**
- **Generation (Maturation)**
- **Migration**
- **Trap**
- **Reservoir**

Trap Types

(A Question of Seal)

- Structural
- Stratigraphic
- Other

Traps

- **Anticlinal** - Rock layers folded into a dome
- **Stratigraphic** - Rock layers changing from a good reservoir to non-reservoir due to change in rock type (pinch-out), reservoir quality (diagenesis), or removal (erosional unconformity)
- **Fault** - Offset of rocks such that oil and gas accumulates in reservoir rock

Typical Hydrocarbon Traps

Structural

A Anticline

Structural

B Normal fault

Structural

C Thrust fault

Stratigraphic

D Sandstone lenses

E Stratigraphic sandstone pinchout

F Unconformity

Typical Hydrocarbon Traps

G Reef (a small "patch" reef)

Structural Traps

Simple Anticline

IDEALIZED OIL AND GAS ACCUMULATION

**Surface Anticline
Hunton Limestone (Oklahoma)**

The Elephant

East-west seismic depth section, south Ghawar.

Regional east-west cross section.

Fig. 214. Missourian sandstone structure map, Mobeetie field. From Dutton, 1982. Permission to publish by AAPG.

SSW

LOW RELIEF SALT PILLOW
NANCY FIELD

NNE

CLARKE COUNTY, MISSISSIPPI

B

B'

SEA LEVEL

Fig. 314. Nancy Field, low relief salt pillow, Mississippi. From Hughes, 1968. Permission to publish by the Gulf Coast Association of Geological Societies.

Salt-Induced Structural Trap (Gentle)

A Minor Fault Complication

Figure 8-10 Integrated fault and structure map for the 6000-ft Horizon. The darkened circles delineate the intersection of each structure contour with the fault contour of the same elevation.

A Major Fault Complication

Figure 8-22 An integrated structure map of a very complexly faulted anticlinal structure. Each fault was integrated with the structural interpretation as shown in Fig. 8-21.

Salt-Cored Structure
(Greatly Simplified)

Figure 4-6 A cross section through a complex diapiric salt structure, penetrated by four vertical wells.

Deepwater Seismic Line (Showing Affects of Diapirs)

Fig. 219. Structure section, Painter Reservoir, Wyoming. Permission to publish by Chevron.

Structural Traps in a Compressional Terrain

Groningen Field (Largest Gas Field in Europe)

Fig. 217. Cross-section and structure map, Groningen field. From Stauble and Millius, 1970. Permission to publish by AAPG.

Fig. 31. Minas Field structure map. From Hasan, et al., 1977. Permission to publish by PT Caltex Pacific Indonesia.

Minas Field (Largest Oil Field in Indonesia)

Unconformity Trap

Figure 8-41 Typical hydrocarbon trap beneath an angular unconformity.

NORTH

SOUTH

Figure 8-42 Example of an angular unconformity recognized by electric log correlation. (From Lock and Voorhies 1988. Published by permission of the Gulf Coast Association of Geological Societies.)

East Texas Field

(E.U.R. ~ 5 BBO)

Figure 8-43 Structure map on top of the Woodbine Sand in the East Texas pool. As shown in the cross section insert, the intersection of two unconformity surfaces marks the eastern boundary of this unconformity trap. (From Geology of Petroleum, first ed. By A. I. Levorsen, Copyright 1954 by W. H. Freeman and Company. Reprinted by permission.)

East Texas Oil Field (1930)

Largest “lower-48” field

More than 5 billion barrels recoverable

Prudhoe Bay Oil Field (1968)

- Largest North American field
- More than 8 billion barrels recoverable

STRUCTURAL CROSS SECTION

Oklahoma City Field (Largest in Oklahoma)

Oklahoma City Field—Anatomy of a Giant

Lloyd E. Gatewood - 1969

FIG. 7.—Pre-Pennsylvanian subcrop map illustrating large areal extent of erosion and truncated shape Ordovician Simpson and Arbuckle preserved at unconformity surface. A-A' is line of sections in Figures 6 and

Oklahoma City Field Sub-Crop Map (Pre-Penn Unconformity)

Oklahoma City Field (Wilcox Reservoir)

Simple Fault Trap (Upthrown Normal Fault)

Extensio

Simple Fault Trap (Narrow Horst) Extensional

Fig. 410. Combination stratigraphic/structural trap

SCHEMATIC CROSS SECTION

DOWNTROWN LOWER GORU PLAY

SCHEMATIC CROSS - SECTION
BADDIN BLOCK EXPULSION/MIGRATION STYLE

Variably Sealing Fault

Stratigraphic Traps

NW SE

SCHEMATIC OF
POTENTIAL SEMBAR / LOWER GORU
STRATIGRAPHIC PLAY

ORIGINAL SALINITY

HYPERSALINE

LOWER GORU

SEMBAR

TLG

RANN OF KUTCH
SALTMARSH

MOVEMENT OF
HYPERSALINE
SURFACE WATER

CHILTAN

Author: D. BOYD Drafted by: TAJAMUL Date: NOV. 94

Truncation Trap on Flank Of Fault Closure

BARI FIELD

SCHEMATIC CROSS SECTION

Author : D. BOYD
 Drafted by : A. JAVED
 Date : AUGUST, 1993

Fig. 409. Stratigraphic trap

Fig. 169. Cross-section of reef production, Indonesia. From Vincelette and Soeparjadi, 1976. Permission to publish by AAPG. See Figure 165.

Fig. 174. Above: Isopach map of Horseshoe reef field, West Texas, showing location of significant production from reef limestone along crest of atoll. Below: Southwest-northeast schematic cross-section through thickest known part of Horseshoe atoll. From Vest, 1970. Permission to publish by AAPG.

Horseshoe Atoll Complex Midland Basin (W. Tx)

Other Traps

Combination

Hydrodynamic

Non (Un) Conventional

Reams Southeast Field Middle Booch Structure Map

Reams Southeast Field

Middle Booch Net Sandstone Isopach

(Showing Combination Trap)

Hydrodynamic Trap

Fig. 244. Hydrodynamically tilted oil-water contact

Example Map View
of
Hydrodynamic Trap

Fig. 243. Tilted oil-water contact, Frannie Field, Wyoming. From Hubbert, 1953. Permission to publish by AAPG.

Conventional vs. Non-Conventional Gas Accumulations

Petroleum System Summary

- **Source (Material and Rocks)**
- **Generation (Maturation)**
- **Migration**
- **Trap**
- **Reservoir**

Reservoir Types

- Clastic
 - Blanket Sandstones (Marine Reworked)
 - Channels / Deltaics / Turbidites / Nearshore Marine
 - Others (Aeolian, Granite Wash)
- Carbonate
 - Limestone
 - Dolomite
- Unconventional
 - Gas-Oil Shale (tight sandstone/limestone)
 - Coalbed Methane
 - Others (hydrates, asphalts)

Reservoir Sandstone

Good Porosity = Lots of Space for Petroleum

Pores
(blue)

Reservoir Sandstone

Pore-Filling Cement Reduces Quality

= Less Space for
Petroleum

Clastics

Sedimentary Environments

38 Common Sedimentary Environments
Figure 6.38

**Blanket Sandstone Reservoir
Simpson-Oil Creek (Oklahoma)**

**Aeolian Sandstone
Coconino (Arizona)**

Very Generalized Isopachs of
Sandstones in Variety of
Depositional Environments

FIGURE 21: Typical isopach patterns associated with clastic sedimentation.

Modern Barrier Island Gulf Coast

Idealized Tidal Delta Oklahoma (Booch)

**Overbank Sandstones
Oklahoma (Savanna)**

**Modern Mahakam Delta Plain
East Kalimantan, Indonesia**

Incised Valley Block Diagram

**Fluvial (Incised Valley) Sandstone
Oklahoma (Hartshorne)**

Fluvial Sandstone Oklahoma (Red Fork)

Fluvial Sandstone Oklahoma (Red Fork)

Well Log of Incised Valley-Fill Sandstone Oklahoma's Brooken Field (Booch)

APPENDIX 4

Mason A-1

TD 1609'

Comp. Date 4/82

Photos-

Fluvial Sandstone Isopach Map Oklahoma (Upper Booch)

Sedimentary Environments

38 Common Sedimentary Environments
Figure 6.38

Plummer/McGeary/Carlson *Physical Geology*, 8e Copyright © 1999,
McGraw-Hill Companies, Inc. Dubuque, Iowa. All Rights Reserved

**Turbidite Sandstone
Oklahoma (Atoka)**

Carbonates

Sedimentary Environments

38 Common Sedimentary Environments
Figure 6.38

Plummer/McGeary/Carlson *Physical Geology*, 8e Copyright © 1999,
McGraw-Hill Companies, Inc. Dubuque, Iowa. All Rights Reserved

**Carbonate Reservoir
Hunton Limestone (Oklahoma)**

Fig. 387. Oriented fractures in rocks.

Productive fractured porous limestone

Fig. 406. Tectonic effect upon reservoir potential

Fig. 403. Weathering and limestone porosity

Fig. 386. Vugular porosity in carbonates

**Carbonate Reservoir
Red Wall Limestone (Arizona)**

**Carbonate Reservoir
Wapanuka Limestone (Oklahoma)**

Oklahoma Recovery Factor Distribution

Recovery Factor By Reservoir Class

Unconventional

Conventional vs. Non-Conventional Gas Accumulations

Surface Coal Mine in Oklahoma

Gas Transport Mechanisms in Coal

Fluid Production from
Natural Fractures

Gas Desorption from
Cleat Surfaces

Molecular Diffusion
through the Coal Matrix

Comparison of recovery trends for conventional gas wells and coalbed methane wells.

Coalbed Methane Well (Oklahoma)

U.S. Coal Basins

Woodford Shale (Oklahoma)

U.S. Shale Gas Basins

Athabasca Tar Sands

Methane Hydrates

