CALCAREOUS FORAMINIFERS AND ALGAE FROM THE TYPE MORROWAN (LOWER PENNSYLVANIAN) REGION OF NORTHEASTERN OKLAHOMA AND NORTHWESTERN ARKANSAS

JOHN R. GROVES

The University of Oklahoma
Norman
1983
Title Page Illustration
Specimens of Millerella pressa Thompson, × 100, from the Brentwood Limestone Member of the Bloyd Formation (see pl. 5, figs. 1–5).

This publication, printed by the University of Oklahoma Printing Services, Norman, Oklahoma, is issued by the Oklahoma Geological Survey as authorized by Title 70, Oklahoma Statutes, 1981, Section 3310, and Title 74, Oklahoma Statutes, 1981, Sections 231–238. 1,000 copies have been prepared for distribution at a cost to the taxpayers of the State of Oklahoma of $7,364.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Previous studies</td>
<td>3</td>
</tr>
<tr>
<td>Foraminifers</td>
<td>3</td>
</tr>
<tr>
<td>Algae</td>
<td>3</td>
</tr>
<tr>
<td>Other groups</td>
<td>3</td>
</tr>
<tr>
<td>Localities</td>
<td>3</td>
</tr>
<tr>
<td>Stratigraphy</td>
<td>5</td>
</tr>
<tr>
<td>Biostratigraphic significance of the biota</td>
<td>7</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>8</td>
</tr>
<tr>
<td>Systematic paleontology</td>
<td>9</td>
</tr>
<tr>
<td>General statements</td>
<td>9</td>
</tr>
<tr>
<td>Kingdom Protista</td>
<td></td>
</tr>
<tr>
<td>Phylum Protozoa</td>
<td></td>
</tr>
<tr>
<td>Order Foraminiferida</td>
<td></td>
</tr>
<tr>
<td>Family Tuberitinida</td>
<td></td>
</tr>
<tr>
<td>Genus Tubertina</td>
<td>9</td>
</tr>
<tr>
<td>T. plana</td>
<td>9</td>
</tr>
<tr>
<td>Genus Diplosphaerina</td>
<td>9</td>
</tr>
<tr>
<td>D. inaequalis</td>
<td>9</td>
</tr>
<tr>
<td>Order Foraminiferida</td>
<td></td>
</tr>
<tr>
<td>Family Pseudoammodiscidae</td>
<td></td>
</tr>
<tr>
<td>Genus Pseudoglomospira</td>
<td>10</td>
</tr>
<tr>
<td>Family Pseudoammodiscidae</td>
<td></td>
</tr>
<tr>
<td>Genus Calcivertella</td>
<td>10</td>
</tr>
<tr>
<td>C. adherens</td>
<td>10</td>
</tr>
<tr>
<td>Genus Calcitornella</td>
<td>10</td>
</tr>
<tr>
<td>Genus Trepeilopsis</td>
<td>11</td>
</tr>
<tr>
<td>T. minima</td>
<td>11</td>
</tr>
<tr>
<td>Genus Palaeonubeculartia</td>
<td>11</td>
</tr>
<tr>
<td>Family Endothyridae</td>
<td></td>
</tr>
<tr>
<td>Genus Endothyra</td>
<td>11</td>
</tr>
<tr>
<td>Genus Planendothyra</td>
<td>12</td>
</tr>
<tr>
<td>P. spirilliniformis</td>
<td>12</td>
</tr>
<tr>
<td>P. evoluta</td>
<td>12</td>
</tr>
<tr>
<td>Genus Endothyra</td>
<td>13</td>
</tr>
<tr>
<td>Family Archaediscida</td>
<td></td>
</tr>
<tr>
<td>Genus Asteroarchaedicus</td>
<td>13</td>
</tr>
<tr>
<td>A. rugosus</td>
<td>13</td>
</tr>
<tr>
<td>Genus Neoarchaecus</td>
<td>14</td>
</tr>
<tr>
<td>Genus Planospirodiscus</td>
<td>14</td>
</tr>
<tr>
<td>P. sp. A</td>
<td>14</td>
</tr>
<tr>
<td>Genus Tubispirodiscus</td>
<td>14</td>
</tr>
<tr>
<td>T. sp. A</td>
<td>15</td>
</tr>
<tr>
<td>Genus Hemiarchaecidus</td>
<td>15</td>
</tr>
<tr>
<td>H. sp. A</td>
<td>15</td>
</tr>
<tr>
<td>Family Biseriamminidae</td>
<td></td>
</tr>
<tr>
<td>Genus Biseriella</td>
<td>15</td>
</tr>
<tr>
<td>Family Eostaffelliida</td>
<td></td>
</tr>
<tr>
<td>Genus Eostaffella</td>
<td>15</td>
</tr>
<tr>
<td>E. pinguis</td>
<td>16</td>
</tr>
<tr>
<td>E. sp. A</td>
<td>16</td>
</tr>
<tr>
<td>E. sp. B</td>
<td>16</td>
</tr>
<tr>
<td>Family Eostaffeliidae?</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Genus Millerii</td>
<td>17</td>
</tr>
<tr>
<td>M. marblen</td>
<td>17</td>
</tr>
<tr>
<td>M. pressa</td>
<td>18</td>
</tr>
<tr>
<td>M. aff. M. pressa</td>
<td>18</td>
</tr>
<tr>
<td>M. cf. M. extensa</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family Tetrataxidae</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Genus Tetraxis</td>
<td>19</td>
</tr>
<tr>
<td>T. maxima</td>
<td>19</td>
</tr>
<tr>
<td>T. angusta</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family Palaeotextulariidae</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Genus Palaeoextularia</td>
<td>20</td>
</tr>
<tr>
<td>P.? sp.</td>
<td>20</td>
</tr>
<tr>
<td>Genus Climaxammina</td>
<td>20</td>
</tr>
<tr>
<td>C. antiqua</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family Lasiodiscidae</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Genus Eolasisdiscus</td>
<td>20</td>
</tr>
<tr>
<td>E. donbassicus</td>
<td>21</td>
</tr>
<tr>
<td>Genus Monolaxisinoides</td>
<td>21</td>
</tr>
<tr>
<td>M. transitus</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family Lasiodiscidae?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Genus Turrispirodes</td>
<td>22</td>
</tr>
<tr>
<td>T. multiolatus</td>
<td>22</td>
</tr>
<tr>
<td>T. aff. T. multiolatus</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family Hemigradiopsida</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Genus Hemigradius</td>
<td>23</td>
</tr>
<tr>
<td>H. harltoni</td>
<td>23</td>
</tr>
<tr>
<td>H. sp. A</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kingdom Plantae</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Division Chlorophyta</td>
<td></td>
</tr>
<tr>
<td>Family Dasycladaceae</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kingdom Plantae</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Division Rhodophycophyta</td>
<td></td>
</tr>
<tr>
<td>Family undetermined</td>
<td></td>
</tr>
</tbody>
</table>

Genus *Cuneiphycus*	24
C. texana	25
C. aliquantulus	26
Genus *A.*, *n.*	26
Genus *A. s.*	26
Genus *Archaolithophyllum*	26
A. missouriense	27
A. sp. A.	27

<p>| Division Cyanophyta | |</p>
<table>
<thead>
<tr>
<th>"Section" Porostromata</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Genus Girvanella</td>
<td>27</td>
</tr>
<tr>
<td>G. minuta</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kingdom Plantae?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Division Rhodophycophyta</td>
<td></td>
</tr>
<tr>
<td>Family Aoujgaliacean</td>
<td></td>
</tr>
</tbody>
</table>

Genus *Stachyoides*	28
S. aff. S. nuius	28
"S." *spissa*	28
Family Ungdarellacea?
Subfamily Stacheiinae?

Genus "Eflugelia" ... 29
"E." sp. A ... 30

Incertae Sedis

Genus Calcisphaera .. 30
C. laevis ... 30
Genus Asphaltina .. 30
A. cordillerensis .. 30
Genus Proninella ... 31
P. strigosa ... 31
Genus Nostocites ... 31
N. cf. N. vesiculosa ... 31
Form genus Osagia ... 32

Family Salebridae

Genus Tubisalebra ... 33
T. calamiiformis ... 33

References cited .. 33
Index .. 63

ILLUSTRATIONS

Text–Figures

1. Index map of type Morrowan region showing locations of measured sections 2
2. Stratigraphic nomenclature and time-stratigraphic relations between
 Morrowan sequences .. 4
3. Columnar sections and stratigraphic positions of samples collected 6
4. Comparison of Cuneiphycus Johnson and Genus A, n. gen. 25
5. "Eflugelia" Vachard ... 29
6. Nostocites Maslov .. 32

Plates

1. Tubertitina, Diplophaerina, Palaeonubecularia, Pseudoglosospira, Calcitornella,
 Trepelesia, Turrispiroides, Calcivertella ... 43
2. Turrispiroides, Endothyra, Planoendothyra, Planoendothyra? 45
3. Planoendothyra?, Asteroarchaeidiscus, Neorhachaeidiscus, Biseriella, Planospiridiscus?;
 Tubispiridiscus, Hemiarachaeidiscus, Monotaxinoides 47
4. Eostaffella, Millerella ... 49
5. Millerella, Tetratectas, Climacamminia, Palaeodeothyra? 51
6. Hemigordius, Eolasidiscus, Donzella, Paraeopimastospora 53
7. Paraeopimastospora, Stachoeides, Asphaltina, Nostocites 55
8. "Stachoeides," Cuneiphycus, "Eflugelia" .. 57
9. Cuneiphycus, Archaeolithophyllum, Girvanella, Proninella 59
10. Genus A, n. gen., Osagia, Calcisphaera, Tubisalebra 61

TABLES

1. Chart showing local ranges of calcareous microfossils in northwestern Arkansas. facing 10
2. Chart showing local ranges of calcareous microfossils in northeastern Oklahoma. facing 10
CALCAREOUS FORAMINIFERS AND ALGAE FROM THE TYPE MORROWAN (LOWER PENNSYLVANIAN) REGION OF NORTHEASTERN OKLAHOMA AND NORTHWESTERN ARKANSAS

JOHN R. GROVES

Abstract—Type Morrowan (Lower Pennsylvanian) calcareous foraminifers and algae, here described in detail for the first time, are distinctive and thereby provide a basis for recognizing rocks of similar age in other areas of North America. Biostratigraphically important taxa within type Morrowan rocks include the foraminifers Millerella pressa, M. marblensis, Eostaflella pinguis, Monotaxinoides transitorius, Planoendothyra spirilliformis, P. evoluta, Hemigordius hartloni, and the rhodophyceous algae assigned to Cuneiphycus texana, C. aliquantulus, and a newly described genus. Of these taxa, the appearances of Millerella pressa, M. marblensis, and Monotaxinoides transitorius are most useful for distinguishing lower Morrowan from upper Chesterian rocks.

Furthermore, the occurrence of Hemigordius hartloni in the upper type Morrowan demonstrates that an informal, local, twofold biostratigraphic subdivision is possible. This species appears in the upper part of the Brentwood Limestone Member of the Floyd Formation in northwestern Arkansas and at the base of the Brewer Bend Limestone Member of the Sausbee Formation in northeastern Oklahoma. Its appearance coincides closely with the base of the Idiognathodus sinuosus Conodont Zone and falls within the Brunnecerias branneri Ammonoid Zone and the Plicochonetes? arkanzus Brachiopod Zone.

The primitive fusulinids Eoschubertella, Pseudostaflella, and Profusulinella were not recovered from type Morrowan rocks. Thus, no local evidence supports a Morrowan age for any part of the ranges of these taxa.

INTRODUCTION

The Morrowan Series is the standard of reference for Lower Pennsylvanian marine rocks in North America; yet, despite the importance of this series in North American and intercontinental stratigraphy, calcareous foraminifers and algae from the type Morrowan region of northeastern Oklahoma and northwestern Arkansas (text-fig. 1) have never before been described in detail. The paucity of studies of these microfossils is not restricted to the type region; few workers have attempted to examine Morrowan assemblages completely or critically anywhere in North America (see section on Previous Studies, below). Consequently, Morrowan foraminifers and algae are rather poorly understood in comparison with certain other biostratigraphically useful fossil groups (e.g., conodonts, ammonoids, brachiopods). The lack of detailed studies is reflected by the coarse resolution of existing foraminiferal zonations of the Morrowan interval. The widely used Zone of Millerella (Thompson, 1945, 1948) and Mamet Zone 20 (Mamet and Skipp, 1970; Mamet, 1975) assign the Morrowan to a single zone or portion of a zone, and thus provide no basis for subdividing it into finer biostratigraphic units. Both zones are based on appearances of genera without utilizing diagnostic Morrowan species. This contrasts with zonations based on conodonts, ammonoids, and brachiopods that use the ranges of key species to provide precise correlations within the Morrowan Series. The need for a better understanding of Morrowan foraminifers and algae is further underscored by recent heightened interest in the placement of the Mississippian–Pennsylvanian and Morrowan–Atokan/Derryan boundaries (e.g., Brenckle and others, 1977; Sutherland and Manger, in press; Brenckle, Groves and Skipp, 1982) where foraminifers are among the most useful fossil groups.

This study is a detailed account of the taxonomy and stratigraphic distribution of type Morrowan calcareous foraminifers, algae, and incertae sedis, which include 38 genera and 43 species. Lower type Morrowan rocks are distinguished from the underlying late Chesterian (Late Mississippian) Pitkin Limestone by local appearances of the foraminifers Millerella pressa, M. marblensis,
Monotaxinoides tarritorius, Eostaffella pinguis, Planoendothyrza evolutea, P. spirilliniformis, and the algae Cuneipora texana, C. aliquantulus, and Genus A, species A, n. gen., n. sp. Furthermore, an informal, local, twofold biostratigraphic subdivision of the Morrowan is possible based on the appearance of Hemigordes harltoni. This species appears in the upper part of the Brentwood Limestone Member of the Boyd Formation in northwestern Arkansas and at the base of the Brewer Bend Limestone Member of the Sausbee Formation in northeastern Oklahoma. Its appearance coincides closely with the base of the Idiogathodus sinuosus Conodont Zone and falls within the Branneroceras branneri Ammonoid Zone and the Placochonetes? arkanusus Brachiopod Zone. The primitive fusulinids Eoschubertella, Pseudostaffella, and Profusculina were not recovered from type Morrowan rocks. Accordingly, there is no local evidence supporting a Morrowan age for any portion of the ranges of those taxa.

Field work for this investigation was conducted during July 1979 and January and March 1980. The stratigraphic position of each sample has been painted in yellow on the outcrop to facilitate re-collecting.
PREVIOUS STUDIES

The Lower Pennsylvanian sequence (text-fig. 2) in the type Morrowan region has been the focus of numerous lithostratigraphic and biostratigraphic investigations ever since the pioneering work of Simonds (1981). Only studies of calcareous foraminifers, algae, and other fossil groups of particular bearing on the present research are discussed herein. Henbest (1953, 1962a, 1962b) and Manger and Saunders (1980) provide extensive reviews of the published literature on type Morrowan rocks.

Foraminifers

Foraminifers from the type Morrowan region have received little attention. Cursory studies by Thompson (1944), Lane and others (1972), and Nordine-Zeller (1977) represent the entire published literature on this topic. Thompson (1944) studied millerellids from the Brentwood Limestone Member of the lower Floyd Formation at Hale Mountain, Arkansas. He described and illustrated Millerella marblensis, M. pressa, M.? advena var. ampla, M.? advena, and M. pinguis, of which the latter two have their type locality within the Brentwood. Thompson sampled the Kessler Limestone Member of the upper Floyd Formation but did not report foraminifers from that unit.

Lane and others (1972) were the first to report Millerella spp. from the Kessler. The discovery of this fauna in youngest type Morrowan rocks, to the exclusion of fusulinids, led them to assign all of the type Morrowan to that portion of the Zone of Millerella below the appearances of Eschubertella and Pseudostaffella.

Foraminifers and calcareous algae from Chesterian and Morrowan rocks in Washington County, Arkansas, and Adair and Muskogee Counties, Oklahoma (text-fig. 1) were illustrated by Nordine-Zeller (1977). To date, her work represents the most comprehensive investigation of type Morrowan calcareous microfossils. Nevertheless, it lacks detailed stratigraphic and systematic treatment of the fossils and thus provides no basis for a better understanding of their taxonomy and stratigraphic distribution.

Morrowan calcareous foraminifers have been reported elsewhere in North America from Kansas (Thompson, 1944), Texas (Plummer, 1930, 1945; Thompson, 1942, 1947, 1948; Stewart, 1957; Moore, 1964; Lane and others, 1972; King, 1973), New Mexico (Thompson, 1946; King, 1973; Nevada (Rich, 1961, 1970; Slade, 1961; Cassity and Langenheim, 1966; Marshall, 1969; Brenckle, 1973), Utah (Thompson, 1945; Rich, 1970), Colorado (Thompson, 1945; Lehmann, 1953), Idaho (Mamet and others, 1971; Skip and Brenckle, 1979), Wyoming (Mamet, 1975), Alaska (Mamet and Armstrong, 1972; Armstrong and Mamet, 1977), and Oklahoma (Galloway and Harlton, 1928).

Algae

Kotila (1973) investigated the paleoecology of calcareous algae from the Morrowan of northeastern Oklahoma. He described and illustrated Archaeolithophyllum, Cuneiphybus, Givranella, one unnamed genus, and the form genera Osagia and Ottonosia. The present study shows the algal flora in the type Morrowan region to be far more diversified than was suggested by Kotila.

Other Groups

Representatives of a number of other fossil groups from the type Morrowan region have been investigated to various degrees. They include condodonts (Lane, 1967, 1977; Lane and others, 1971; Lane and Straka, 1974; Grayson and Sutherland, 1977), ammonoids (Gordon, 1965, 1970; McCaleb, 1968; Quinn, 1970, 1971; Saunders and others, 1977; Manger and Saunders, 1980), ostracodes (Sohn, 1977; Knox, 1977), and brachiopods (Henry, 1973, 1974; Henry and Sutherland, 1977; Sutherland and Henry, 1980). Biostratigraphic zonations of the Morrowan based on these studies provide an excellent framework into which the results of this investigation can be integrated.

LOCALITIES

Material for this investigation was collected from eight previously measured sections in northwestern Arkansas and northeastern Oklahoma (text-fig. 1). The sections were measured by Patrick K. Sutherland and his students at The University of Oklahoma. Their locations are (1) Betsey Lee Creek, NW¼NW¼ sec. 33, T. 13 N., R. 20 E., Muskogee County, Oklahoma; (2) Webbers Falls Lock and Dam, SW¼SW¼SE¼ sec. 34, and SE¼SE¼SW¼ sec. 34, T. 13 N., R. 20 E., Muskogee County, Oklahoma; (3) Sawney Hollow, NE¼ sec. 10, T. 12 N., R. 33 W., Crawford County, Arkansas, continuing westward to SW¼ sec. 25, T. 15 N., R. 26 E., Adair County, Oklahoma; (4) Evansville Mountain, along Arkansas Highway 59, center S¼ sec. 35, T. 13 N., R. 33 W., continuing northward to center S¼ sec. 26, T. 13 N., R. 33 W., Washington County, Arkansas; (5) Hale Mountain, W¼ sec. 7, T. 13 N., R. 32 W., Washington County, Arkansas; (6) Garrett Hollow, N¼
Text-figure 2. Stratigraphic nomenclature and time-stratigraphic relations between Morrowan sequences in northeastern Oklahoma and northwestern Arkansas (modified from Sutherland and Henry, 1977).
STRATIGRAPHY

The term Morrow was first used to designate the sequence of rocks above the Mississippian Pitkin Limestone and below the Pennsylvanian Winslow Formation in northwestern Arkansas (Ulrich, 1904). Purdue (1907) elevated the term to group rank, and Moore and others (1944) subsequently elevated it to a series. The Morrowan is currently recognized as the base of the Pennsylvanian System and lies between the Upper Mississippian Chesterian and the Middle Pennsylvanian Atokan (= Derryan) Series. Sutherland and Henry (1977) broadened the definition of the type region of the Morrowan to include the fossiliferous carbonate-platform facies of northeastern Oklahoma 40 miles (64 km) to the southwest. Text-figure 2 summarizes the stratigraphic nomenclature and regional correlations between the northwestern Arkansas and northeastern Oklahoma sequences.

In northwestern Arkansas the Morrowan consists of the Hale Formation, which is subdivided into the Cane Hill and Prairie Grove Members, and the overlying Floyd Formation, which is subdivided into the Brentwood Limestone, Woolsey, Dye Shale, and Kessler Limestone Members. The Trace Creek Shale Member, formerly included in the Floyd Formation, was reassigned to the basal Atoka Formation of the Atokan Series by Sutherland and Grayson (1978). The Cane Hill Member of the Hale Formation was named by Henbest (1953) for “its typical development in the southern part of Washington County, in the vicinity of Cane Hill.” It rests unconformably on the Chesterian Pitkin Limestone and reaches a thickness of 65 feet (20 m). It consists of ripple-marked and cross-bedded silty sandstone and fine-grained sandstone interbedded with shale. Calcareous layers are present locally. Conglomeratic lenses composed of rounded cobbles of the underlying Pitkin are also present locally at the base of the unit. The Cane Hill was not sampled for this investigation.

The Prairie Grove Member of the Hale Formation, named by Henbest (1953) for exposures at Evansville Mountain, ranges in thickness from 60 to 200 feet (20–61 m). It is composed of resistant, fine- to medium-grained calcareous sandstone and sandy carbonate packstone and grainstone. Distinguishing characteristics of the Prairie Grove are its coarsely pitted, “honeycomb” weathered surfaces and well-developed lamellar cross-bedding. The contact between the Prairie Grove and the underlying Cane Hill is unconformable at most localities. Evidence of the unconformity includes basal conglomerates, truncated strata, reworked fossil elements, and the variable age of the beds straddling the contact (Saunders and others, 1977; Manger and Saunders, 1980).

The Brentwood Limestone Member of the Floyd Formation was named by Ulrich (1904) to replace the term Pentrimonial Limestone of Owen (1858). It is 30–50 feet (9–15 m) thick and consists of alternating beds of dark shale and sandy crinoid carbonate packstone and grainstone. The contact between the Brentwood and the underlying Prairie Grove is conformable.

Conformably overlying and interfingered with the Brentwood is the Woolsey Member, named by Henbest (1953). This member is a continental siltstone and shale unit that contains abundant plant fragments on shale partings. A thin coal seam, the Baldwin coal, occurs persistently at or near the top of the Woolsey across northwestern Arkansas. The Woolsey attains a thickness of up to 40 feet (12 m) but is only 7 feet (2 m) thick at Evansville Mountain, which is the only locality where the unit was encountered in this study. No samples were collected.

The Woolsey and overlying Dye Shale Member are separated by an unconformity that is recognized across northwestern Arkansas and northeastern Oklahoma. The Dye Shale, named by Henbest (1962b), consists of predominantly dark-gray to black marine siltstone and fissile shale with local lenses of limestone. It varies in thickness from 60 to 110 feet (18–34 m). A fossiliferous calcareous sandstone, the “caprock of the Baldwin coal,” is present at the base of the Dye across the region. The “caprock” varies in thickness from 0 to 25 feet (8 m) and is the only portion of the Dye sampled for this study.

The Kessler Limestone Member overlies the Dye conformably. The Kessler, which was named and described by Simonds (1891), ranges from nearly pure oolitic grainstone to sandy algal wackestone and packstone interbedded with shale. This member reaches a thickness of 43 feet (14 m) but typically is 8–15 feet (2.5–3.7 m).

The Trace Creek Shale Member of the Atoka Formation overlies the Kessler. The Trace Creek, named by Henbest (1962b), varies in thickness from 20 to 70 feet (6–21 m) and consists of dark-gray to olive-green, noncalcareous, fissile shale interbedded with thin layers of sandstone, calcareous sandstone, and, rarely, sandy limestone. Henbest (1962b) considered the Trace Creek to be the highest unit in the type Morrowan Series. Recent investigations, however, have demonstrated that on physical evidence it is a facies of the Atoka Formation in Oklahoma (Sutherland and others, 1978) and that conodonts from the bas-
Text-figure 3. Columnar sections and stratigraphic positions of samples collected from Webbers Falls Lock and Dam, Betsey Lee Creek, Sawney Hollow, and Evansville Mountain localities. Small numerals to right of sections designate sample numbers.
al part of the Trace Creek correlate with faunas from the Atokan Series of the Ardmore Basin and frontal Ouachita Mountains of southern Oklahoma (Grayson and Sutherland, 1977; Sutherland and Grayson, 1978). Accordingly, the Trace Creek is now considered to mark the base of the Atokan Series of northwestern Arkansas.

Moroccan sandstones, shales, and limestones in northwestern Arkansas grade westward into a carbonate-platform facies in northeastern Oklahoma, where the percentage of sandstone is much lower. The terms Hale and Boyd can be applied only as far west as western Adair County, Oklahoma (text-fig. 1). Recognizing this, Sutherland and Henry (1977) divided the Morrowan sequence in most of northeastern Oklahoma into the Sausbee and McCully Formations. The Sausbee is subdivided into the Braggs and Brewer Bend Limestone Members, and the McCully is subdivided into the Chisum Quarry, Shale "A," and Greenleaf Lake Limestone Members.

The Braggs Member of the Sausbee Formation rests unconformably on the Pitkin Limestone. It varies in thickness from 40 to 175 feet (12–53 m) and consists mostly of interbedded crinoid–bryozoan limestone and shale. Thick algal layers and bryozoan–algal bioherms are developed in the upper part of the unit (Bonem, 1977).

The conformably overlying Brewer Bend Limestone Member is composed of algal wackestone to packstone with minor amounts of shale. It attains a thickness of 42 feet (13 m). The Braggs and Brewer Bend Limestone Members, taken together, make up a depositional package of nearly constant thickness in which the thicknesses of the members are inversely proportional.

The Chisum Quarry Member of the McCully Formation is separated from the underlying Brewer Bend by the same regional unconformity that separates the Woolsey and Dye Shale Members of the Floyd Formation in northwestern Arkansas (Sutherland and Henry, 1977). It consists of bryozoan–crinoid wackestone to grainstone interbedded with thin shale layers and varies in thickness from less than 1 foot to 36 feet (11 m). Much of the variation is attributable to the lensing nature of the limestone layers in the middle and upper parts of the unit.

The Shale "A" Member conformably overlies and interfingers with the Chisum Quarry. It consists of mostly noncalcareous, unfossiliferous shale, although several limestone lenses are present in the most southerly exposures. The unit varies in thickness from 25 to 40 feet (7.5–12 m) and averages about 30 feet (9 m). No samples were collected.

The Greenleaf Lake Limestone Member overlies the Shale "A" conformably. It reaches a thickness of 30 feet (9 m) but typically is much thinner owing to removal of its middle and upper parts by pre-Atoka erosion (Sutherland and Henry, 1977).

It consists of interbedded crinoid–bryozoan packstone and grainstone with little shale. The Morrowan sequence is unconformably overlain by the Atoka Formation across northeastern Oklahoma.

BIOSTRATIGRAPHIC SIGNIFICANCE OF THE BIOTA

Occurrences of calcareous microfossils are shown in tables 1 and 2 for northwestern Arkansas and northeastern Oklahoma, respectively. Data are reported only from the Evansville Mountain, Sawney Hollow, Webbers Falls Lock and Dam, and Betsey Lee Creek localities, since recoveries from the remaining four localities were generally poor. Occurrences of individual taxa that are described and (or) illustrated from localities not shown on tables 1 and 2 are mentioned separately in the systematic portion of the text.

Foraminifers are among the most useful fossil groups for distinguishing Upper Mississippian from Lower Pennsylvanian rocks (Brenckle and others, 1977), yet the practice of recognizing the Mississippian–Pennsylvanian boundary by the appearances of *Globivalvulina, Lipinella* (sensu Mamet; = *Lipinellina* Cummings *nomen nudum*), and *Millerella*, as has been advocated by Mamet (Mamet and Skipp, 1970; Mamet, 1975), is not entirely satisfactory. Species of *Globivalvulina* do not occur in this study; the concept of *Lipinella* is not clear, because the genus has not been properly defined; and species of *Millerella* appear in late Chesterian rocks (Brenckle, 1977; Brenckle and Groves, 1981). The need to identify species that first occur in the Morrowan is apparent (Brenckle, 1977).

Lower Morrowan rocks in the type area are readily distinguished from those in the late Chesterian Pitkin Limestone (Brenckle, 1977) by the presence of the foraminifers *Millerella pressa, M. marbliensis*, *M. cf. M. extensa, Monotaxinoides transitorius, Eolasidiscus donbassicus, Eostafla pinguis, Plianoendothyra spirilliniformis, P. evoluta, Hemigordius harlonti, H. sp. A., and the algae Cuneiphyccus texanus, C. aliquantulus, Donecella aff. *D. lunaensis*, and Genus A species A, n. gen., n. sp. Of these, Millerella pressa, M. marbliensis, and Monotaxinoides transitorius are reliable Lower Pennsylvanian indices elsewhere in North America.

Foraminifers are of demonstrated value in finely subdividing the Mississippian and Middle and Upper Pennsylvanian, yet existing zonations within the Morrowan (e.g., Zone of *Millerella; Mamet Zone 20*) assign the entire series to a single zone or portion of a zone. Thus they provide no means for recognizing finer biostratigraphic units. Both the Zone of *Millerella* (Thompson, 1945, 1948) and Mamet Zone 20 (Mamet and
Formation of central Texas within the $I. \text{sinuosus}$ Zone (W. L. Manger, personal communication, 1981) and in Thompson’s (1944) collections from the subsurface Kearny Formation of western Kansas (P. L. Brenckle, personal communication, 1981). The relation of the Kearny specimens to the conodont succession, however, cannot be determined.

The local occurrences of Millerella cf. $M. \text{extensa}$ and Eolasidiscus donbassicus in the upper Brentwood are also potentially significant. Millerella extensa has previously been reported only from Atokan (= Derryan) rocks in Nevada (Marshall, 1969) and in Texas and New Mexico (King, 1973). Thus my specimens, if conspecific with true $M. \text{extensa}$, represent the oldest reported occurrence of the species. Eolasidiscus donbassicus has never before been reported from North America, although Browne and Pohl (1973, pl. 26, fig. 4) illustrated a specimen that may be a juvenile of the species. This species occurs in the Soviet Union in Upper Serpukhovian (upper Lower Carboniferous) and Bashkirian (lower Middle Carboniferous) deposits that are roughly equivalent to the Morrowan (Reitlinger, 1956; Brazhnikova, in Wagner and others, 1979). Unfortunately, neither $M. \text{cf.} M. \text{extensa}$ nor $E. \text{donbassicus}$ was recovered from the northeastern Oklahoma sequence for stratigraphic comparison.

Recent heightened interest in the placement of the Morrowan–Atokan (= Derryan) boundary (e.g., Sutherland and Manger, in press) also bears on the present research. Many workers (e.g., Mamet and Skipp, 1970; Lane and others, 1972; Mamet, 1975; Webster and others, in press) equate the appearances of Eoschubertella and Pseudostaffella with the base of the Atokan/Derryan, whereas others (e.g., Thompson, 1945, 1948; Dunbar, 1963; Douglass, 1977) place the base of the Atokan/Derryan at the appearance of Profusulinella. Still others (e.g., Shaver and Smith, 1974; Knox, 1977; Ross and Bamber, 1978; Ross, 1979) suggest that Profusulinella may occur locally in rocks older than basal Atokan/Derryan.

My detailed type Morrowan collections did not yield the primitive fusulinids Eoschubertella, Pseudostaffella, and Profusulinella. Thus there is no local evidence supporting a Morrowan age for any portion of the ranges of these taxa.

ACKNOWLEDGMENTS

Drs. Paul L. Brenckle and Patrick K. Sutherland suggested this project, assisted with field work, and provided valuable assistance throughout its course. Mr. R. Kent Grubbs, Dr. Charles W. Harper, Jr., Dr. H. Richard Lane, Dr. Bernard L. Mamet, and Dr. Walter L. Manger discussed various aspects of the study. Mr. Bob Harrill and Mr. Ervin Hoffman assisted expertly in the prepara-
tion of thin sections. Amoco Production Co. (Research Center, Tulsa) permitted the use of its research facilities, without which this study would not have been possible. Dr. Brenckle, Dr. Mark Rich, and Ms. Betty Skipp reviewed the manuscript critically. The efforts of all of the above are deeply appreciated.

SYSTEMATIC PALEONTOLOGY

General Statements

Systematic descriptions are based on examination of specimens in randomly oriented thin sections. Generic descriptions derive both from previously published works and from examination of the present material. Descriptions of species are based solely on examination of the present material, and in each case the number of individual specimens measured is indicated in parentheses (e.g., n = 8).

No attempt has been made to compile exhaustive synonymies. Rather, entries in a synonymy represent bibliographic citations to figured specimens mostly from North America. In many instances reference is made to previously published works that contain extensive synonymies.

Specimens are deposited in the University of Oklahoma Invertebrate Paleontology Repository (designated by the prefix OU).

Kingdom **PROTISTA**

Phylum **PROTOZOA**?

Order **FORAMINIFERIDA**?

Family **TUBERITINIDAE**

Genus **Tubertina** Galloway and Harlon, 1928

Type species.—*Tubertina bulbacea* Galloway and Harlon, 1928.

Description.—Test is composed of one or more hemispherical to flask-shaped chambers that are attached to a host by a basal disc. The wall is dark, microgranular calcite, thin, perforate or very finely perforate.

Discussion.—*Tubertina* differs from *Diplosphaerina* Derville (=*Eotubertina* Mikluhko-Maklay) in its thicker, coarsely perforate wall.

Tubertina plana Reitlinger, 1950

Pl. 1, figs. 1, 3

Tubertina collosa Reitlinger var. *plana* Reitlinger, 1950, p. 89, pl. 19, fig. 1.

Description (n = 8).—Chambers are hemispherical. Diameter is up to 242 μm. Height is up to 195 μm. Wall is dark, microgranular calcite, coarsely perforate, 10–15 μm thick.

Discussion.—The present specimens are assigned to *T. plana* on the basis of wall thickness and the shape of the tests. *Tubertina plana* differs from *T. collosa* Reitlinger in its thinner wall and smaller size, and from *T. bulbacea* Galloway and Harlon by its hemispherical shape.

Occurrence.—The species is present in the Prairie Grove Member of the Hale Formation and the Brentwood Limestone and Kessler Limestone Members of the Boyd Formation (table 1). It also occurs in the Braggs and Brewer Bend Limestone Members of the Sausbee Formation (table 2).

The species was originally described from the upper Middle Carboniferous (lower Moscovian) Vereiskiy Horizon of the northern Urals, U.S.S.R.

Genus **Diplosphaerina** Derville, 1952, _emend._ Browne and Pohl, 1973

Type species.—*Diplosphaera inaequalis* Derville, 1931.

Description.—Test is composed of one or more hemispherical to flask-shaped chambers that are attached to a host by a basal disc. The wall is dark, microgranular calcite, thin, imperforate or very finely perforate.

Diplosphaerina inaequalis (Derville, 1931)

Pl. 1, figs. 2, 4

Description (n = 34).—Chamber diameter is up to 219 μm. Chamber height is up to 215 μm. Wall is dark, microgranular calcite, imperforate or very finely perforate, 5–13 μm thick.

Discussion.—A broad range of morphologies is represented in the present material, owing to developmental lability and the variety of views that result from randomly oriented thin sections.

Occurrence.—*Diplosphaerina inaequalis* is one of the most abundant microfossils encountered in this study. It occurs in the Prairie Grove Member of the Hale Formation and the Brentwood Limestone and Kessler Limestone Members of the Boyd Formation (table 1). It also occurs in the Braggs and Brewer Bend Limestone Members of the Sausbee Formation and the Greenleaf Lake Limestone Member of the McCully Formation (table 2).

Readers are referred to Brenckle, Marshall,
Waller, and Wilhelm (1982) for the geographic and stratigraphic distribution of the species in North America.

Phylum **Protozoa**
Order **Faraminifera**
Family **Pseudoglossochilidae**

Genus **Pseudoglossochilium** Bykova, 1955

Type species.—**Pseudoglossochilium devonica** Bykova, 1955.

Description.—Test is free; it consists of a spherical proloculus followed by a glomosperically coiled non-septate second chamber that is semicircular or flattened in cross section. Wall is dark, microgranular calcite. Aperture is a simple opening at the end of the second chamber.

Discussion.—*Pseudoglossochilium* differs from *Palaenobaculitidium* because it has a coarse, agglutinated wall.

The material was not studied sufficiently for speciation.

Occurrence.—Representatives of the genus occur in the Prairie Grove Member of the Hale Formation and the Brentwood Limestone and Kessler Limestone Members of the Floyd Formation (table 1). They also occur in the Bragg Member of the Sausbee Formation (table 2).

Genus **Calcitornella** Cushman and Waters, 1928a

Type species.—**Calcitornella elongata** Cushman and Waters, 1928a.

Description.—Test is attached, composed of a spherical proloculus followed by a tubular second chamber that is nearly planispirally coiled about the proloculus in the early stages and arranged in a zigzag pattern in later stages. The final portion of the tubular chamber may meander freely. Wall is calcareous, very fine grained, imperforate. Aperture is a simple opening at the end of the tubular chamber.

Discussion.—The zigzag pattern of the later stages of the tubular chamber distinguishes *Calcitornella* from *Calcitornella* Cushman and Waters. *Calcitornella* differs from *Ammovertella* Cushman by its calcareous wall.

Calcitornella **Cushman and Waters, 1928a**

Pl. 1, fig. 13

Description (n = 9).—Total length of the test is up to 490 μm. Zigzag portion of the test is tapered, roughly fan shaped. Rate of expansion of the tubular chamber is moderate. Diameter of the tube is 27–55 μm in the later stages. Wall is very fine grained, imperforate, copper brown to amber in transmitted light. Its thickness is 2–3 μm in the early stages, up to 15 μm in the later stages. Aperture was not observed.

Discussion.—Species of *Calcitornella* are particularly difficult to distinguish, owing to developmental lability and the limitations of studying specimens in thin sections. As a result, the genus is probably over-speciated (e.g., Rich, 1980, p. 46–47).

Occurrence.—The species is present in the Brentwood Limestone and Kessler Limestone Members of the Floyd Formation (table 1) and the Bragg Member of the Sausbee Formation (table 2).

It was originally described from the Upper Pennsylvanian Graham Formation of the Cisco Group in Young County, Texas, and has been reported elsewhere in North America from Chesterian and Pennsylvanian rocks in Texas (Cushman and Waters, 1928a, 1930), Oklahoma (Galloway and Harlton, 1928), and Alabama (Rich, 1980).
Genus *Trepeilopsis* Cushman and Waters, 1928a, *emend.* Browne and Pohl, 1973

Type species. — *Turiitellella grandis* Cushman and Waters, 1927.

Description. — Test consists of a spherical proloculus followed by a tubular second chamber that is spirally coiled around a central host (typically a spine). The final portion of the tubular chamber may straighten and bend back across the previous coils. Wall is dark, microgranular calcite, undifferentiated. Aperture is a simple opening at the end of the tubular chamber.

Discussion. — Plummer’s (1945, p. 247) restudy of the type material of the type species of *Trepeilopsis* demonstrated that its wall is porcellaneous, not arenaceous as originally described (see Browne and Pohl, 1973, p. 214, and Rich, 1980, p. 47, for discussion). Accordingly, *Trepeilopsis* is distinguished from its arenaceous morphological analogue *Turiitellella* Rhumbler and is a senior synonym of *Volotextularia* Ter- mier and Termier.

Trepeilopsis minima Dain, 1958

Pl. 1, fig. 11

Trepeilopsis mississippiensis Cooper, 1947, (part), p. 87, pl. 20, figs. 367, 37, 39, not 38, 40, 41.

Trepeilopsis grandis Cushman and Waters var. minima Dain, in Bykova and others, 1956, p. 11–12, pl. 1, fig. 13; Brazhnikova and others, 1967, pl. 19, fig. 3.

Volotextularia mississippiensis (Cooper, 1947) Mamet, 1976, pl. 88, figs. 18–22; Armstrong and Mamet, 1977, p. 94, pl. 35, fig. 19.

Description (n = 7). — The tubular chamber is initially irregularly coiled and then spirally coiled around a central host. The final portion may straighten and bend back across previous coils. Test length is 340 μm or more. Diameter of the final portion of the tubular chamber is 31–51 μm. Wall is undifferentiated microgranular calcite, 7–13 μm thick in the last coil. It appears dark reddish brown in transmitted light. Aperture is a simple opening at the end of the tubular chamber.

Discussion. — The present specimens are assigned to *T. minima* on the basis of test length, tube diameter, and wall thickness. *Trepeilopsis minima* differs from *T. grandis* (Cushman and Waters) in its smaller size. Specimens that are probably conspecific with the present material have been described and illustrated as *Volotextularia mississippiensis* (Cooper) in Mamet (1976) and Armstrong and Mamet (1977). Although this species name would have priority over Dain’s, examination of Cooper’s type specimens demonstrates that the holotype (pl. 20, figs. 40, 41) and a paratype (pl. 20, fig. 38) belong to the questionable alga *Stachelia* Brady (P. L. Brenckle, personal communication, 1981). Cooper’s other specimens with a true trepeilopsis coil are placed in Dain’s species as shown in the synonymy.

Occurrence. — The species is present in the Brentwood Limestone and Dye Shale Members of the Boyd Formation (table 1) and the Bragg Member of the Sausbee Formation (table 2).

It was first described from the upper Lower Carboniferous Beshevo Limestone (Provin Horizon), U.S.S.R., and has been reported from Chesterian to Atokan (= Derryan) rocks of Tennessee (Rich, 1980), the Canadian Cordillera (Mamet, 1976), and Alaska (Armstrong and Mamet, 1977).

Genus *Palaeonubicularia* Reitlinger, 1950

Pl. 1, figs. 5, 6

Type species. — *Palaeonubicularia fluosa* Reitlinger, 1950.

Description. — Test is typically encrusting; it consists of a spherical proloculus followed by a glomospirally coiled to meandering tubular second chamber. Wall is calcareous agglutinated with large adventitious grains, very thick. Aperture is a simple opening at the end of the second chamber.

Discussion. — *Palaeonubicularia* differs from *Pseudoglosospira* Bykova in having a thick agglutinated wall. *Pseudolituatuba* Vdovenko and Vostokovella Pronina are probably synonyms of *Palaeonubicularia*.

The material was not studied sufficiently for speciation.

Occurrence. — The genus occurs in the Prairie Grove Member of the Hale Formation and the Brentwood Limestone and Kessler Limestone Members of the Boyd Formation (table 1). It also occurs in the Brewer Bend Limestone Member of the Sausbee Formation (table 2).

Family *ENDOTHYRIDAE*

Pl. 2, figs. 6, 7

Description. — Test is discoidal, laterally compressed; it consists of a spherical proloculus followed by 3 or more mostly skew-coiled, involute volutions. The final volution may be nearly planispiral and partly evolute. Rate of expansion of the coil is moderate to rapid. Chambers are sub-quadratic to irregular and highly inflated. There are typically 6–12 chambers in the last volution. Septa are anteriorly directed, straight or slightly curved, of variable length. They may be thickened at their distal ends and (or) at the septal join. Secondary floor coverings and projections are
weakly to very well developed. Wall is calcareous and consists of an original thin, dark layer underlain by a thicker, less dense layer, which are subsequently covered by secondary deposits. Aperture is a crescentic opening at the base of the last chamber.

Discussion.—Endothyra is one of the earliest described Carboniferous foraminifers. Several hundred species have been described under it, many of which are synonyms, and many of which have been referred to other genera. As a result, taxonomic relations within the genus are highly confused, thus limiting their use for fine biostratigraphic division. Mamet (in Armstrong and Mamet, 1977) provides an extensive discussion of Endothyra.

Endothyra is rare in the present material and was not studied sufficiently for speciation.

Occurrence.—The genus occurs in the Prairie Grove Member of the Hale Formation and the Brentwood Limestone, one Member of the Floyd Formation (table 1). It also occurs in the Bragg Member of the Saussee Formation and the Chisholm Quarry Member of the McCully Formation (table 2).

Genus Planoendothyra Reitlinger, 1959

Type species.—Endothyra alutovica Reitlinger, 1950.

Description.—Test is discoidal, laterally compressed, with a broadly rounded periphery. Initial volutions are involute and highly skewed with respect to the outer planispiral, evolve volutions. Rate of expansion of the coil is very rapid. Chambers are mildly inflated to subglobular, typically very large. Septa are straight to slightly curved, anteriorly directed, relatively long, very slightly thickened at the join. Sutures between adjacent chambers are depressed. Wall is mostly homogeneous, dark brown, microgranular calcite, although it appears faintly layered in some specimens. Secondary floor coverings and lateral chamber fillings are weakly to very well developed. Aperture is a slit at the base of the last chamber.

Discussion.—The coiling distinguishes Planoendothyra from Endothyra Phillips, emend. Brady, emend. Chin. a., the latter of which is typically more or less involute and skew-coiled throughout. Planocentrothyra differs from Endothyra Rozovskaya in possessing well-developed endothyrid secondary deposits.

Planoendothyra spirilliformis (Brazhnikova and Potievskaya, 1948)

Pl. 2, figs. 12–15

Endothyra spirilliformis Brazhnikova and Potievskaya, 1948, p. 2, pl. 5, figs. 2, 3.

Description (n = 5).—Mature test of 3½–4½ volutions is discoidal and slightly asymmetrically umbilicate. Periphery is broadly rounded in axial section, lobate in sagittal section. Diameter is 460–546 μm. Width is 195–234 μm. Width/diameter ratio is 0.42–0.48. Rate of expansion of the coil is very rapid. Height of the ultimate volutions is 121–156 μm; 62–74 μm for the penultimate volution; 39–47 μm for the antepenultimate volution. Specimens of 3½–4½ volutions have 7–9 chambers in the last whorl. Chambers are inflated to subglobular, relatively large. Septa are straight to slightly curved, anteriorly directed, slightly thickened at the join. Their length is one-half to one-third of chamber height. Wall is 12–15 μm thick in the last whorl, mostly undifferentiated. Secondary floor covering and lateral chamber fillings are moderately well developed. Interior diameter of the proloculus is 20–25 μm. Aperture is a slit at the base of the last chamber.

Discussion.—Planoendothyra spirilliformis differs from P. evoluta (Reitlinger) in its better developed secondary deposits, less evolve coil, and less compressed umbilical region. It is smaller and narrower than P.? sp. A described below.

Occurrence.—The species occurs in the Brentwood Limestone and Kessler Limestone Members of the Floyd Formation (table 1) and in the Bragg Member of the Sausbee Formation (table 2). Questionable specimens were recovered from the Prairie Grove Member of the Hale Formation and the Dye Shale Member of the Floyd Formation (table 1).

The species was first described from the Upper Bashkirian of the Donets Basin, U.S.S.R.

Planoendothyra evoluta (Reitlinger, 1950)

Pl. 2, figs. 8–10

Endothyra spirilliformis Brazhnikova and Potievskaya var. evoluta Reitlinger, 1950, p. 36, pl. 6, fig. 9.

Description (n = 5).—Mature test of 3–4 volutions is discoidal and nearly symmetrically, deeply umbilicate. Periphery is very broadly rounded in axial section, lobate in sagittal section. Diameter is 369–437 μm. Width is 172–211 μm. Width/diameter ratio is 0.44–0.50. Initial volution is involute and highly skewed with respect to the outer planispiral, evolve volutions. Rate of expansion of the coil is very rapid. Height of the last volution is 105–125 μm; 59–74 μm for the penultimate volution; 39–43 μm for the antepenultimate volution. One specimen of 3½–4 volutions has 8 chambers in the last whorl. Chambers are inflated and relatively large. Septa are straight, anteriorly directed; their length is two-thirds or more of the chamber height. Wall is dark, microgranular calcite, undifferentiated, 12–15 μm thick in the last volution. Secondary deposits are weakly de-
veloped. Interior diameter of the proloculus is 20–25 μm. Aperture is a slit at the base of the last chamber.

Discussion.—*Planoendothyra evoluta* differs from *P. spirilliniformis* (Brazhnikova and Potievskaya) in having a more compressed umbilical region and more highly evolute outer whorls. It differs from *P.? sp. A* (described below) in its smaller size, weakly developed secondary deposits, more evolute coiling, and deep umbilici.

Occurrence.—The species occurs in the Brentwood Limestone Member of the Floyd Formation and the Trace Creek Shale Member of the Atoka Formation (table 1). It also occurs in the Bragg Member of the Sausbee Formation and the Chisum Quarry Member of the McCully Formation (table 2).

It was originally described from the Lower Bashkirian of the southern Timan Upland, Komi A.S.S.R., U.S.S.R.

Planoendothyra sp. A

Description (n = 5).—Mature test of 3½–4½ volutions is broadly discoidal, asymetrically umbilicate, with a very broadly rounded periphery. Diameter is 441–604 μm. Width is 242–312 μm. Width/diameter ratio is 0.48–0.55. Initial 1–2 volutions are involute and strongly skew-coiled with respect to the outer volutions, which are nearly planispiral and partially evolute. The final half of the test is offset laterally, which results in pronounced asymmetry of the test. Rate of expansion of the test is very rapid. Height of the ultimate volution is 148–230 μm; 66–94 μm for the penultimate volution; 32–51 μm for the antepenultimate volution. Chambers are inflated, large, and relatively high. There are 7–9 in the last whorl. Septa are straight to slightly curved, anteriorly directed. Their length is two-thirds or more of the chamber height. Wall is mostly undifferentiated dark, microgranular calcite, 12–15 μm thick in the last volution. A thin, dark outer layer and a thicker, lighter inner layer are faintly perceptible in some specimens. Secondary floor coverings and lateral chamber fillings are well developed. Interior diameter of the proloculus is 20–27 μm. Aperture is a slit at the base of the last chamber.

Discussion.—The present species differs from *P. spirilliniformis* (Brazhnikova and Potievskaya) and *P. evoluta* (Reitlinger) in its larger size, larger width/diameter ratio, less evolute coiling, and asymmetrical final whorl. It is assigned with question to *Planoendothyra* because some specimens are only partially evolute in the final volution, and the coiling is more skewed in the final volutions than in typical *Planoendothyra*. The possibility exists that the species might belong in *Endothyra*.

Occurrence.—The species occurs in the Bragg Member of the Sausbee Formation (table 2). One specimen, assigned with question to the species, was recovered from the Prairie Grove Member of the Hale Formation (table 1).

Family ARCHAEIDIDAE

Genus Asteroarchaeidiscus Mikluhko-Maklay, 1956

Type species.—*Archeidiscus baschkiricus* Krestovnikov and Theodorovich, 1936.

Description.—Test is discoidal to lenticular, with a rounded periphery, and consists of a spherical proloculus followed by a non-septate second chamber. Coiling is skewed and involute in the inner whorls, skewed or planispiral and involute to evolute in the outer whorls. The pattern of sutures between successive early whorls is characteristically "stellate" in axial section. Lumen is omega-shaped to subrescentic, closed throughout the entire test or open in the final volution. Wall is single-layered, pseudofibrous calcite. Aperture is a simple opening at the end of the second chamber.

Discussion.—Some authors (e.g., Bozorgnia, 1973; Brenckle, 1973; Mamet, in Armstrong and Mamet, 1977) included in *Asteroarchaeidiscus* only those forms with completely closed lumina or with lumina open in the final volution but lower than the thickness of the surrounding wall. The concept of *Asteroarchaeidiscus* employed here is that of Browne and others (1977), who include in the genus forms with both completely closed lumina and open lumina (regardless of height) in the final whorl. As such, *Asteroarchaeidiscus* differs from *Neoarchaeidiscus* Mikluhko-Maklay, which has an open lumen in the last few volutions.

Asteroarchaeidiscus is the most abundant archaeidiscid encountered in this study. Specimens assignable to the genus, but not sufficiently well oriented to permit speciation, are recorded in tables 1 and 2 as *Asteroarchaeidiscus* spp.

Asteroarchaeidiscus rugosus (Rauzer-Chernousova, 1948)

Pl. 3, figs. 3–7

See Browne and others, 1977, p. 209, for synonymy.

Description (n = 12).—Tests of 3½–4½ volutions are discoidal with rounded peripheries and straight-sided to slightly convex flanks. Diameter is 138–213 μm. Width is 60–93 μm. Width/diameter ratio is 0.35–0.53. Coiling is skewed throughout the entire test, involute in the inner whorls, evolute in the final 1½–2 whorls. Lumen is omega-shaped to subrescentic, closed throughout the entire test or open only in the final half volution where it may be up to 25 μm high. Wall is 10–13 μm thick in the last volution. Interior diameter of the proloculus is up to 35 μm. Aperture is a low slit at the end of the second chamber.
Discussion.—Asteroarchaeocystis rugosus is distinguished from A. kaschiricus (Krestovnikov and Theodorovich) by its smaller width/diameter ratio. Rich (1980) considered A. rugosus to be a junior synonym of A. parvus (Rauzer-Chernousova), citing minimal differences in size as insufficient grounds for specifica tion, and placed the species within Neoarchaeocystis Mikluhko-Maklay. Both species satisfy the generic criteria of Asteroarchaeocystis employed here, and they are maintained as separate species on the basis of differences in coiling. Asteroarchaeocystis rugosus is skew-coiled throughout, whereas the final few volutions in A. parvus are planispiral. Asteroarchaeocystis rugosimilis Brencle and A. gnomellus Brencle are both considered to be junior synonyms of A. rugosus (Browne and others, 1977; Brencle, personal communication, 1981).

Occurrence.—The species is present in the Prairie Grove Member of the Hale Formation and the Brentwood Limestone Member of the Boyd Formation (table 1). It also occurs in the Bragg and Brewer Bend limestone Members of the Sau bee Formation and in the Chisum Quarry Member of the McCully Formation (table 2).

It was first described from the upper Lower Carboniferous Igochin Formation, central Kazakhstan, U.S.S.R., and has been reported elsewhere in North America from Chesterian and Morrowan rocks in Nevada (Bren cle, 1973), Kentucky (Browne and others, 1977), and Arkansas (Bren cle, 1977), and the southeastern United States (Rich, 1980).

Genus Neoarchaeocystis Mikluhko-Maklay, 1956

Pl. 3, figs. 8, 9

Type species.—Asteroarchaeocystis incertus Grozdilova and Lebedeva, 1954.

Description.—Test consists of a spherical proloculus followed by a non-septate second chamber. It is discoidal with rounded periphery and straight-sided convex flanks. Side thickenings are absent. Colling is skewed and involute in the inner whorls, skewed to planispiral and evolute in the outer whorls. The pattern of sutures between successive early whorls is characteristic "stellate" in axial section. Lumen is subcrescentic to semicircular, closed in the inner whorls, open in the final whorls. Wall is single-layered, pseudodobibrass calcite. Aperture is a simple opening at the end of the second chamber.

Discussion.—Neoarchaeocystis differs from Asteroarchaeocystis Mikluhko-Maklay, which has a completely closed lumen or open lumen only in the final volutions; and from Hemiar cheocystis Mikluhko-Maklay, which has a completely open lumen. Specimens of Planospirodiscus Sosipat rova may have closed then open lumina, but they differ from Neoarchaeocystis in their planispiral coiling.

Few specimens assignable to Neoarchaeocystis were recovered in this study. They are not suitably oriented to permit speciation.

Occurrence.—Neoarchaeocystis spp. occur in the Prairie Grove Member of the Hale Formation and the Brentwood Limestone Member of the Boyd Formation (table 1).

Genus Planospirodiscus Sosipat rova, 1962

Type species.—Planospirodiscus tajmyricus Sosipat rova, 1962.

Description.—Test consists of a spherical proloculus followed by a planispirally coiled, evolute, non-septate second chamber. It is discoidal with rounded periphery and concave, straight-sided, or slightly convex flanks. Side thickenings are absent. Lumen is subcrescentic low opening in all volutions except the initial one, where it may be closed. Its height in the last volution is less than the thickness of the surrounding wall. The wall is single-layered, pseudodobibrass calcite. Aperture is a simple opening at the end of the second chamber.

Discussion.—Planospirodiscus differs from Hemiar cheocystis Mikluhko-Maklay in its planispiral coiling, and from Tubispirodiscus Browne and Pohl in its low lumen and lack of depressed sutures in the outer whorls.

Planospirodiscus? sp. A

Pl. 3, fig. 12

Description (n = 1).—Test of 4 volutions is narrowly discoidal with rounded periphery and slightly convex flanks. Diameter is 275 μm. Width is 85 μm. Width/diameter ratio is 0.31. Coiling is slightly turned in the initial volution, planispiral and evolute in the outer volutions. Lumen is semicircular, closed in the initial volution, open in the outer volutions. Its height is 28 μm in the last whorl. Wall is 10 μm thick in the last volution. Interior diameter of the proloculus is 48 μm. Aperture was not observed.

Discussion.—The present specimen is assigned with question to Planospirodiscus because of its high lumen in the last volution. There is insufficient material for comparison.

Occurrence.—The specimen was recovered from the Brentwood Limestone Member of the Boyd Formation (table 1).

Genus Tubispirodiscus Browne and Pohl, 1973

Type species.—Tubispirodiscus simplissimus Browne and Pohl, 1973.

Description.—Test is narrowly discoidal, composed of a spherical proloculus followed by a non-septate second chamber. Flanks are straight-sided, without thickenings. Periphery is broadly
rounded. Second chamber is planispirally coiled and evolute throughout the entire test. Sutures are slightly depressed in the outer volutions. Lumen is relatively high and open throughout the entire test. Its floor is flat or slightly convex. Wall is undifferentiated pseudofibrous calcite. Aperture is a semicircular opening at the end of the second chamber.

Discussion.—The distinctive features of Tubispirodiscus are its planispiral evolute coil and high, open lumen. These features distinguish the genus from Planospirodiscus Sosipatropova, which is planispiral with a very low, slit-like lumen.

Tubispirodiscus sp. A

Pl. 3, fig. 13

Description (n = 1).—Test is narrowly discoidal, evolute, and has 3½ planispirally coiled volutions. Diameter is 273 μm. Width is 78 μm. Width/diameter ratio is 0.28. Periphery is broadly rounded. Sutures are slightly depressed in outer volutions. Flanks are straight-sided, without thickenings. Lumen is semicircular to subcrescentic, open throughout the entire test, 38 μm high in the last volution. Wall is 10–13 μm thick in the last volution, slightly thicker in the penultimate volution. Interior diameter of the proloculus is 38 μm. Aperture was not observed.

Discussion.—Despite having fewer volutions, the present specimen is significantly larger than mature specimens of Tubispirodiscus simplissimus Browne and Pohl.

The lumen and proloculus of the specimen are lined with a reddish-brown secondary deposit, which should not be confused with an inner, dark, microgranular wall layer.

Occurrence.—The specimen was recovered from the Braggs Member of the Sausbee Formation (table 2).

Genus *Hemiarchaeodiscus* Miklukho-Maklay, 1957

Type species.—*Hemiarchaeodiscus planus* Miklukho-Maklay, 1957.

Description.—Test is discoidal to lenticular, composed of a spherical proloculus followed by a non-septate second chamber. Periphery is broadly rounded. Flanks are straight-sided to convex, without thickenings. Coiling is skewed and involute in the inner whorls, skewed to nearly planispiral and evolute in the outer whorls. Lumen is subcrescentic to semicircular, open throughout the entire test. Wall is single-layered calcite. Aperture is a semicircular opening at the end of the second chamber.

Discussion.—The concept of Hemiarchaeodiscus employed here is that of Browne and others (1977, p. 188–190), which includes in the genus forms that otherwise resemble *Archaediscus* Brady but lack an inner, dark wall layer. The validity of *Hemiarchaeodiscus* is unclear, owing to confusion surrounding the nature of the wall in *H. planus* Miklukho-Maklay, type species of the genus.

Hemiarchaeodiscus sp. A

Pl. 3, fig. 14

Description (n = 1).—Test of 3½ volutions is discoidal with broadly rounded periphery and straight-sided flanks. Diameter is 178 μm. Width is 73 μm. Width/diameter ratio is 0.41. Coiling is skewed throughout the entire test and mostly evolute. Lumen is semicircular, open throughout the entire test. Its height is 18 μm in the last volution. Wall is 7–10 μm thick in the last volution. Interior diameter of the proloculus is 28 μm.

Discussion.—The present specimen is assigned to *Hemiarchaeodiscus* because of its single-layered wall and completely open lumen. There is insufficient material for comparison.

Occurrence.—The specimen was recovered from the Prairie Grove Member of the Hale Formation (table 1).

Family BISERIAMMINIDAE

Genus *Biseriella* Mamet, in Armstrong and Mamet, 1974

Pl. 3, figs. 10, 11

Type species.—*Globivalvulina parva* Chernysheva, 1948.

Description.—Test is roughly hemispherical, composed of a spherical proloculus followed by a biserial, trochospiral succession of inflated chambers. Chamber size expands very rapidly. The final few chambers may be nearly uncoiled. Wall is undifferentiated dark, microgranular calcite. Aperture is a slit at the base of the last chamber.

Discussion.—Mamet (in Armstrong and Mamet, 1974, p. 660) stated that *Biseriella* links *Biseriammina* Chernysheva and *Globivalvulina* Schubert phylogenetically. *Biseriella* differs from *Biseriammina* in its loose trochospiral coil and from *Globivalvulina* in its undifferentiated wall.

Only three specimens were recovered. The paucity of material precludes speciation.

Occurrence.—The specimens were recovered from the uppermost Prairie Grove Member of the Hale Formation and the basal Brentwood Lime- stone Member of the Boyd Formation (table 1).

Family EOSTAFFELLIDAE

Genus *Eostaffella* Rauzer-Chernousova, 1948

Type species.—*Staffella (Eostaffella) parastruwei* Rauzer-Chernousova, 1948.

Description.—Test is discoidal to lenticular,
Eostaffella sp. B

Typically biumbilicate. Coiling is involute and generally planispiral throughout. Periphery is rounded to subungulal in axial section, smooth in sagittal section. Rate of expansion of the coil is moderate. Chamber shape is subquadrate. Septa are long, straight, normal to the wall or slightly anteriorly directed. Wall is calcareous, three-layered: it consists of a primary thin, dark layer and a thicker, light inner layer, which are overlain by a light second sary layer in the inner volutions. Pseudochomata or chomata are weakly to very well developed. Aperture is a slit at the base of the last chamber.

Discussion.—Eostaffella is distinguished from Millera Thompson by its completely involute coiling and straight septa. It differs from Eostaffella Reitlinger, which has a very broadly rounded outline; from Mediocris Rozovskaya, which has dense secondary fillings in the umbilical region; and from Endostaffella Rozovskaya, which is strongly w-coiled in the initial volutions, partly evolute in some cases, and has poorly developed secondary deposits.

Thompson (1951) erected Paramillerella to include involute forms previously assigned to Millera. As such, most species of Paramillerella belong to Eostaffella (see Brenckle, 1973, p. 74–75, for discussion).

Eostaffella pinguis (Thompson, 1944)

Pl. 4, figs. 1, 2

Millera pinguis Thompson, 1944, p. 425–427, pl. 1, figs. 18, 19, 20.

Paramillerella pinguis (Thompson). Thompson, 1951, pl. 13, fig. 18.

Description (n = 4).—Mature test of 4½–5 volutions is broadly disoidal, symmetrically umbilicate, completely involute. Diameter is 396–584 µm. Width is 179–251 µm. Width/diameter ratio is 0.42–0.50. Periphery is broadly rounded to subrounded in axial section. Height of the last volutions is 78–137 µm; 55–82 µm in the penultimate volutions; 35–47 µm in the antepenultimate volutions. Wall is 10–12 µm thick in the last volutions.

Chomata/pseudochomata are well developed. Interior diameter of the proloculus is 20–30 µm.

Discussion.—No well-oriented sagittal specimens were recovered. Consequently, observations on the nature of the chambers, septa, and aperture cannot be given.

Eostaffella pinguis differs from other representatives of the genus encountered in this study in its rounded to subrounded periphery.

Occurrence.—The species was originally described from the Kessler Limestone Member of the Boyd Formation at Hale Mountain, Arkansas. It was not recovered from the Brentwood in this study. Specimens were recovered from the Prairie Grove Member of the Hale Formation (table 1) and the Brewer Bend Limestone Member of the Sausbee Formation (table 2).

The species has been reported elsewhere in North America from the Morrowan Ely Formation of east-central Nevada (Brenckle, 1973).

Eostaffella sp. A

Pl. 4, figs. 8–12

Description (n = 5).—Mature test of 4½–5½ volutions is disoidal, rhombiform, planispirally coiled, slightly umbilicate. Specimens with 4–4½ volutions are completely involute with angular to subangular periphery. The final half volutions is partially evolute and subrounded in one (unfigured) specimen with 5 volutions. Diameter is 496–693 µm. Width is 203–254 µm. Width/diameter ratio is 0.37–0.53. Height of the last volutions is 110–144 µm; 74–98 µm in the penultimate volutions; 59–89 µm in the antepenultimate volutions. One poorly oriented specimen has 21 chambers in the last volutions; 11 in the penultimate volutions; 13 in the antepenultimate volutions. Wall is 10–12 µm thick in the last volutions.

Chomata/pseudochomata are very well developed. Interior diameter of the proloculus is 20–39 µm. Aperture was not observed.

Discussion.—Eostaffella sp. A differs from E. pinguis and E. sp. B in its rhombiform shape, angular to subangular periphery, and better developed chomata/pseudochomata.

Occurrence.—The species occurs in the Brewer Bend Limestone Member of the Sausbee Formation and the Chisum Quarry Member of the McCull Foundation Formation (table 2).

Eostaffella sp. B

Pl. 4, figs. 6, 7

Description (n = 5).—Mature test of 4½–5½ volutions is disoidal, planispirally coiled, involute, weakly umbilicate. Diameter is 378–426 µm. Width is 125–160 µm. Width/diameter ratio is 0.32–0.41. Periphery is subangular in axial section. Height of the last volutions is 78–105 µm; 47–62 µm in the penultimate volutions; 31–51 µm in the antepenultimate volutions. Wall is 7–8 µm thick in the last volutions. Chomata/pseudochomata are moderately well developed. Interior diameter of the proloculus is 20–27 µm.

Discussion.—Comparison with Eostaffella sp. B is given in the discussion under E. pinguis and E. sp. A.

No sagittally oriented specimens were recovered.

Occurrence.—The species occurs in the Kessler Limestone Member of the Boyd Formation (table 1).
Family EOSTAFFELLIDAE?

Genus *Millerella* Thompson, 1942

Type species—*Millerella marblensis* Thompson, 1942.

Description.—Test is discoidal, consisting of a spherical proloculus followed by several nearly planispirally coiled volutions. Mature specimens (i.e., 4½ or more volutions) are evolute or partly evolute in the final 2 or more volutions. Periphery is rounded to subangular in axial section, smooth in sagittal section. Test is symmetrically umbilicate. Rate of expansion of the coil is moderate to moderately rapid. Chambers are subquadric, typically higher than wide. Septa are long, curved, anteriorly directed. Wall is calcareous, three-layered; it consists of a primary thin, dark layer and a thicker, light inner layer, which are overlain by a light secondary layer in the inner volutions. Chomata are weakly to very well developed. Aperture is a small opening at the base of the last chamber.

Discussion.—*Millerella* is distinguished from *Eostaffella Rauzer-Chernousova (=Paramillerella Thompson, part)* by its evolute outer volutions and curved septa. Some authors (e.g., Dunbar, 1963; Douglass, 1977) have suggested that *Millerella* and *Eostaffella* may be synonyms. I do not share this view, but juvenile specimens (i.e., those having 4 or fewer volutions) of *Millerella* and *Eostaffella* may be impossible to distinguish from one another, especially in axial view. *Millerella* differs from *Ozouwainella* Thompson in its rounded to subangular periphery and evolute outer volutions.

According to Mamet and Skipp (1970) and Mamet (1975), *Millerella sensu stricto* first occurs in the Pennsylvanian of North America, and most of the species assigned to *Millerella* from the Chesterian (see Cooper, 1947; Zeller, 1953) belong within *Eostaffella* or "Zellerina" (Mamet and Skipp, 1970; Armstrong and Mamet, 1977). Nevertheless, true *Millerella* does occur in Chesterian rocks (Brencle, 1977, p. 75, pl. 3, figs. 16–20; Baxter and Brencle, 1981; Brencle and Groves, 1981), and using the presence of the genus as an indicator of the Pennsylvanian is erroneous.

Skinner and Wilde (1954, pl. 49, fig. 3) illustrated one specimen of *Millerella marblensis* Thompson with a coarsely perforate wall from the Atoka Formation of Coal County, Oklahoma. It is noteworthy that among the present specimens, many of which are excellently preserved, none shows any trace of perforations, nor is a perforate wall illustrated or mentioned in other published works on *Millerella* (e.g., Moore, 1964). Examination of the type material of *M. marblensis* from the Marble Falls Formation of Texas also failed to demonstrate wall perforations. I believe that the pores in Skinner and Wilde's specimen may be the result of post-depositional dissolution or other alteration and that a perforate wall should not be considered characteristic of the genus until such time as it is shown definitively in well-preserved material.

The systematic position of *Millerella* is unclear. Thompson (1948, p. 26–27) placed *Millerella* in the subfamily *Ozouwainellinae* Thompson and Foster and subsequently (Thompson, in Loeblich and Tappan, 1964, p. C394) elevated Ozouwainellinae to family rank within the superfamly Fusulinaceae von Möller. *Millerella* is here placed with question in the family Eostaffellidaceae Mamet on the basis of its three-layered eostaffellid wall and basal aperture. It clearly should not be retained within the Fusulinaceae, all the members of which have perforate antethecae rather than basal apertures (Thompson, in Loeblich and Tappan, 1964, p. C394).

Millerella marblensis Thompson, 1942

Pl. 4, figs. 13–17; pl. 5, fig. 10?

M. marblensis Thompson, 1942, p. 405–407, pl. 1, figs. 4, 5, 7, 87, 97, 10?, 11–13; Thompson, 1944, p. 420–423, pl. 1, figs. 1, 3, 4, pl. 2, figs. 1, 2, 42, 57, 7, 8, 14; Thompson, 1945, p. 78, pl. 2, fig. 2, pl. 23, figs. 6, 5, 17, 26, 30, 31, pl. 24, figs. 2, 3, 5; Thompson, 1951, pl. 13, fig. 17, pl. 14, figs. 3, 4, 5; Skinner and Wilde, 1954, pl. 49, fig. 3; Rich, 1961, pl. 142, figs. 6, 7, 87; Slade, 1961, p. 60, pl. 7, fig. 37; Moore, 1964, p. 295–305, pl. 47, figs. 1–24; pl. 48, figs. 1–23; Thompson, in Loeblich and Tappan, 1964, fig. 298–4a; Riss and Sabins, 1965, p. 185–184, pl. 21, fig. 217; Cassity and Langenheim, 1966, p. 941, pl. 110, fig. 47; Marshall, 1969, p. 112, pl. 1, figs. 1–5; Nodine-Zeller, 1977, pl. 2, figs. 1, 2, 267, pl. 3, fig. 17.

Description (n = 12).—Mature test of 4½–5½ volutions is narrowly discoidal, symmetrically umbilicate, planispirally coiled. The final 1–1½ volutions are highly evolute. Diameter is 480–632 μm. Width is 121–195 μm. Width/diameter ratio is 0.24–0.33. Periphery is rounded to subrounded in axial section, smooth in sagittal section, typically inflated in the last half volutions. Height of the last volutions is 101–137 μm; 62–90 μm in the penultimate volutions; 43–62 μm in the antepenultimate volutions. Chambers are subquadric, much higher than wide. One sagittally oriented specimen (assigned with question to the species) has 21 chambers in the last volution, 17 in the penultimate volution, 13 in the antepenultimate volution. Septa are curved anteriorly, and their length is nearly equal to chamber height. Wall is 7–13 μm thick in the last volutions. Chomata are weakly developed. Interior dia-
meter of the prolumina is 27–39 μm. Aperture is a low opening at the base of the last chamber.

Discussion.—Considerable confusion is reflected in many authors’ concepts of *M. marblensis*. This is due, at least in part, to the wide variety of morphotypes originally figured by Thompson (1942). Some of the figured paratypes may not be congeneric with *Millerella* as presently interpreted (pl. 1, figs. 6–10). Later works by Thompson (1944, p. 425, Thompson, in Loeblich and Tappan, 1964, fig. 294; Thompson, 1948, text-fig. 2) more clearly expressed his concept of the species, but they have been largely overlooked. The concept of *M. marblensis* is employed here includes forms that are relatively narrow, evolve in the final 1–1½ volutions, with rounded to subrounded periphery. As such, *M. marblensis* differs from *M. pressa* Thompson, which is only partially evolute in the last volution with subrounded to subangular periphery. Slightly oriented specimens of *marblensis* and *pressa* may be impossible to distinguish from one another in samples that contain both species, as is the case in this study. *Millerella marblensis* differs from *M. extensa* Marshall, which is smaller and narrower.

Occurrence.—The species occurs in the Prairie Grove Member of the Hale Formation and in the Brentwood Limestone Member of the Floyd Formation (table 1). It also occurs in the Bragg’s and Brewer Bend Limestone Members of the Sausbee Formation (table 2).

Millerella marblensis was first described from the Atokan (= Derry) part of the Marble Falls Formation of central Texas. It is widely distributed in Lower and Middle Pennsylvanian rocks in central and western North America.

Millerella pressa Thompson, 1944

Pl. 4, figs. 4–6; pl. 5, figs. 17, 2–5

Millerella pressa Thompson, 1944, p. 423–425, pl. 2, figs. 16–20, 22, 23; Thompson, 1948, pl. 2, fig. 1; Thompson, in Loeblich and Tappan, 1964, fig. 298–4c; Mamet, in Armstrong and Mamet, 1977, p. 90, pl. 35, figs. 17, 27; Nodine-Zeller, 1977, pl. 3, fig. 18.

Millerella marblensis Thompson, 1961, pl. 142, fig. 2 (only); Ross and Sabin, 1965, pl. 21, figs. 18, 227, 247, 26, 27 (only).

Millerella sp. Nodine-Zeller, 1977, pl. 2, fig. 10, 12, 13, 18, pl. 3, fig. 12, 13, 17.

Description (n = 10).—Mature test of 4½–5 volutions is discoidal, deeply umbilicate, and planispirally coiled with slight asymmetry in the initial volution. Diameter is 465–515 μm. Width is 178–198 μm. Width/diameter ratio is 0.35–0.43. Periphery is subangular in axial section. Height of the last volution is 109–137 μm; 47–70 μm in the penultimate volution; 35–39 μm in the antepenultimate volution. Wall is 10–15 μm thick in the last volution. Chomata are moderately well developed. Interior diameter of the proloculus is 27 μm.

Discussion.—The present specimens differ from those assigned to *M. pressa* Thompson in their slightly greater width/diameter ratio and apparently depressed umbilici. Partial recrystallization of their umbilical regions precludes positive determination.

No sagittally oriented specimens were recovered.

Occurrence.—All the specimens were recovered from the Brentwood Limestone Member of the Floyd Formation (table 1).
Pl. 5, figs. 6–9

Description (n = 6).—Mature test of 3½–4½ volutions is disoidal, symmetrically umbilicate, planispirally coiled. The final volution is moderately to highly evolute. Diameter is 257–339 μm. Width is 78–105 μm. Width/diameter ratio is 0.30–0.31. Periphery is subrounded to subangular in axial section, smooth in sagittal section. Height of the last volution is 51–74 μm; 35–51 μm in the penultimate volution; 23–35 μm in the antepenultimate volution. Chambers are subquadrate, slightly higher than wide. There are 17–18 chambers in the last volution, 15–16 in the penultimate volution, 12–13 in the antepenultimate volution. Septa are slightly curved, and their length is nearly equal to chamber height. Wall is 5–8 μm thick in the last volution. Chomata are weakly developed. Interior diameter of the proloculus is 20–27 μm. Aperture is a low opening at the base of the last chamber.

Discussion.—Millerella extensa resembles M. marlensis Thompson in shape but is smaller and narrower. King (1973) named M. extensis from collections from the type Derryn of New Mexico and the Marble Falls Formation of central Texas. His species is here considered to be a junior synonym of M. extensis Marshall. The present specimens are similar to both Marshall’s and King’s material but are smaller.

Occurrence.—The species occurs in the upper part of the Brentwood Limestone Member of the Boyd Formation and the Trace Creek Shale Member of the Atoka Formation (table 1).

The type material of the species was described from the Derryan (= Atokan) Bird Spring Formation of southern Nevada. The only other reported occurrences are King’s specimens from New Mexico and Texas.

Family TETRATAXIDAE

Genus Tetrazyx Ehrenberg, 1854

Description.—Test is conical, composed of a spherical proloculus followed by several trochospirally coiled volutions. There are four chambers per volution. Chambers are elongate, nearly crescent-shaped in axial section, with an apertural flaps that projects into the umbilical cavity. Flanks are straight-sided to convex, rarely concave. Apex is generally angular. Sutures between adjacent chambers are depressed. Wall is calcareous, two-layered: it consists of a dark, inner, microgranular layer and a yellowish, pseudofibrous outer layer. The pseudofibrous outer layer is restricted to the ventral part of each chamber and is well developed in the umbilical region. Aperture is a slit-like opening into the umbilicus, covered ventrally by the apertural flap.

Discussion.—Tetrazyx differs from Polytyx Cushman and Waters in possessing fewer chambers per volution and from Pseudotaxy Mamet in its two-layered wall.

Tetrazyx is specified by dimensions and apical angle, which can be accurately measured only in perfect axial sections. Many species have been described from poorly oriented sections, and the genus is grossly over-specified (Mamet, in Armstrong and Mamet, 1977, p. 97). Only mature, well-oriented specimens were speciated in this study. Occurrences of other specimens are recorded in tables 1 and 2 as Tetrazyx spp.

Tetrazyx maxima Schellwien, 1898
Pl. 5, figs. 11–13

Tetrazyx maxima Schellwien, 1898, p. 274, pl. 24, figs. 5–10.

Description (n = 4).—Test has 6–9 volutions. Diameter is 1.08–1.39 mm. Height is 0.44–0.59 mm. Height/diameter ratio is 0.37–0.46. Apical angle is 101–125°. Flanks are straight-sided to slightly convex. The inner, dark wall layer is 12–20 μm thick, and the outer, pseudofibrous layer is 31–40 μm thick in the umbilical region.

Discussion.—The present specimens are slightly flatter, but otherwise they fall well within the range of variation of the type material. Tetrazyx maxima is distinguished from most other species of the genus by its large size and large apical angle.

Occurrence.—The species is present in the Prairie Grove Member of the Hale Formation and the Brentwood Limestone Member of the Boyd Formation (table 1). It also occurs in the Bragg and Brewer Bend Limestone Members of the Sausbee Formation (table 2).

The type material of the species was described from the Upper Carboniferous of the Carnic Alps.

Tetrazyx angusta Vissarionova, 1948
Pl. 5, fig. 16

See Armstrong and Mamet, 1977, p. 97, for synonymy.

Description (n = 1).—Test has 7–8 (?) volutions. Diameter is 0.76 mm. Height is 0.54 mm. Height/diameter ratio is 0.72. Apical angle is 58°. Flanks are straight-sided to convex. Apertural flaps are weakly developed. The inner, microgranular wall layer is 12 μm thick, and the outer, pseudofibrous layer is 12 μm thick.

Discussion.—Tetrazyx angusta differs from T.
Eolasiodiscus

maxima Schellwien in its smaller size and steeper cone.

Occurrence—The specimen was recovered from the Bragg Member of the Sausbee Formation (table 2).

The species was originally described from the lowermost Moscovian (Middle Carboniferous) of the southern part of the Moscow Basin, U.S.S.R. Tetraactisis specimens of the group T. angusta (i.e., T. acutus Durkinia; T. acutus, Durkin; T. angusta, Durkin) have been reported elsewhere in North America from Meromacian through Morrowan rocks in Alaska (Armstrong and Mamet, 1977) and in Nevada (Brenckle, 1973).

Family PALAEOTEXTULARIDAE

Genus Palaeotextularia Schubert, 1921

Type species.—Palaeotextularia schellwieni Galloway and Rynie, 1930, by designation.

Description.—Test is rectilinear, tapered. It consists of a spherical proloculus followed by a series of biseriately arranged, inflated chambers. Sutures between chambers are deeply depressed. Wall consists of an inner, yellowish, pseudofibrous layer and an outer, dark, microgranular layer that contains adventitious grains. Septa are long, curved, thickened at the distal ends. Aperture is a low crescentic slit the base of the last chamber.

Discussion.—Palaeotextularia differs from Cribrarostomum Möller, which has a cribrate aperture; from Cricaramina Brady, which is biserial then uniserial with a cribrate aperture; and from Deckerella Cushman and Waters, which is biserial then uniserial with double slit aperture.

Palaeo- textularia? sp.

Pl. 5, fig. 17

Discussion.—The biserial parts of Cricaramina and Deckereilla and the early part of Cribrarostomum may be impossible to distinguish from Palaeotextularia. Accordingly, the present specimens are assigned with question to the genus, and no attempt to specialize was made.

Occurrence.—Three specimens were recovered from the Bragg Member of the Sausbee Formation (table 2).

Genus Climacammina Brady, in Etheridge, 1873

Type species.—Cricaramina antiqua Brady, in Young and Armstrong, 1871, emend. Cummings, 1956.

Description.—Test consists of a spherical proloculus followed by a biserial then uniserial succession of chambers. Biserial stage is tapered, subconical, with inflated chambers. Uniserial stage is roughly cylindrical with at least two flattened, slightly inflated chambers. Sutures between adjacent whorls are slightly depressed. Wall is composed of an inner, yellowish, pseudofibrous layer and an outer, dark, microgranular layer that contains adventitious grains. Aperture is cribrate.

Discussion.—Climacammina differs from the morphologically similar genus Koskinobigenina Keckhoff in its two-layered wall; from Deckerella Cushman and Waters in its cribrate aperture; and from Cribrarostomum Möller in its biserial then uniserial arrangement of chambers. Immature specimens cannot be distinguished from Palaeotextularia Schubert.

Climacammina antiqua (Brady, in Young and Armstrong, 1871), emend. Cummings, 1956

Pl. 5, figs. 14, 15

Description (n = 5).—Test consists of the proloculus followed by 15–19 biserially arranged and 3–8 uniserially arranged chambers. Length is 1.81–2.93 mm. Width is 0.72–0.84 mm. Biseriately arranged chambers are inflated, separated by long, curved septa that are thickened at their distal ends. Uniserially arranged chambers are flattened, nearly discoidal. Inner pseudofibrous wall layer is 15–28 μm thick. Outer, microgranular layer is 39–70 μm thick. Wall is significantly thicker in the apertural region. Aperture is cribrate.

Discussion.—Climacammina antiqua differs from Climacammina of the group C. moelleri Reilinger in its smaller width/length ratio. Species included in the latter group are relatively squat, broad forms. Climacammina magna Roth and Skinner, described from the Pennsylvaniaian McCoy Formation of Colorado, is probably conspecific with the present specimens.

Occurrence.—The species is present in the Prairie Grove Member of the Hale Formation and the Bragg Member of the Sausbee Formation (tables 1, 2).

The species was originally described from the Lower Limestone Group (Lower Carboniferous) of Scotland. It has been reported elsewhere in North America from Chesterian rocks in the southeastern United States (Rich, 1980) and the Pennsylvaniaian of Colorado (Roth and Skinner, 1930).

Family LASIODISCIDAE

Genus Eolasiodiscus Reilinger, 1956

Type species.—Eolasiodiscus donbassicus Reilinger, 1956.

Description.—Test consists of a spherical proloculus followed by a tubular second chamber. Coiling is evolute, nearly planispiral to slightly trochospiral. Sutures between adjacent whorls are slightly depressed. Tubular chamber is semicircu-
lar to sub-crescentic in axial section. Wall is calcareous, two-layered; it consists of an inner, dark, microgranular layer and an outer, pseudofibrous layer. An umbilical filling is formed on the ventral side of the test. Primary aperture is a simple opening at the end of the tubular chamber. Supplementary apertures are tiny slit-like openings along the sutures on the dorsal surface of the test.

Discussion.—*Eolasiodiscus* is distinguished from *Monotaxinoides* Brazhnikova and Yartseva by its supplementary apertures, and from *Turrispiroides* Reitlinger by its supplementary apertures and two-layered wall. Browne and Pohl (1973, p. 207) suggested that the seeming presence of supplementary apertures may be an artifact of sagittal orientation of specimens in thin sections, and they placed *Eolasiodiscus* in synonymy with *Monotaxinoides*. Their interpretation is not followed here, since several sagittally oriented specimens were recovered that do not show traces of supplementary apertures. Such specimens were referred to *Monotaxinoides*.

Eolasiodiscus donbassicus Reitlinger, 1956

Pl. 6, figs. 3, 4

Eolasiodiscus donbassicus Reitlinger, 1956, p. 76, pl. 2, figs. 1, 3, 4.

Eolasiodiscus ex gr. donbassicus Reitlinger, BRAZHNIKOVA, in WAGNER AND OTHERS, 1979, pl. 5, figs. 17, 18.

Description (*n* = 3).—Test consists of a spherical proloculus followed by 9–10 nearly planispirally coiled volutions. Diameter is 277–296 μm. Rate of expansion of the coil is moderate and regular throughout the entire test. Chamber width (measured in sagittal section parallel to the dorsal surface of the test) is at least 18–25 μm in the last volution. Primary aperture was not observed. Supplementary apertures are tiny slit-like openings along the sutures on the dorsal surface of the test. Diameter of the proloculus is 18–27 μm.

Discussion.—*Eolasiodiscus donbassicus* differs from *E. galinae* Reitlinger in its smaller supplementary apertures. The present specimens are similar to, but much larger than, a specimen figured by Browne and Pohl (1973, pl. 26, fig. 4). Their specimen has only 6 volutions and thus could be a juvenile *E. donbassicus*.

Occurrence.—The species is present in the Brentwood Limestone Member of the Boyd Formation (table 1). It was originally described from the Bashkirian (Middle Carboniferous) “donselloye” beds of the northwestern Donets Basin, U.S.S.R.

Genus *Monotaxinoides* Brazhnikova and Yartseva, 1956

Type species.—*Monotaxinoides transitorius* Brazhnikova and Yartseva, 1956.

Description.—Test consists of a spherical proloculus followed by a tubular second chamber that is trochospirally coiled in a low cone. Some specimens may be nearly flat. Sutures between adjacent whorls are slightly depressed. Shape of the tubular chamber is semicircular to sub-crescentic in axial section. Wall is calcareous, two-layered; it consists of a dark, microgranular inner layer and a pseudofibrous outer layer. An umbilical filling is formed on the ventral side of the test. Aperture is a simple opening at the end of the tubular chamber.

Discussion.—*Monotaxinoides* is distinguished from *Houchinia* Cushman by its relatively low cone. According to Mamet (in Armstrong and Mamet, 1977, p. 99), *Houchinia* and *Monotaxinoides* constitute an evolutionary continuum of progressive flattening of the spire. Thus, the distinction between the two genera is arbitrary. *Monotaxinoides* differs from *Turrispiroides* Reitlinger in its two-layered wall and umbilical filling and from *Eolasiodiscus* Reitlinger in lacking supplementary apertures.

The outer pseudofibrous wall layer described by Brazhnikova and Yartseva (1956) was not observed among the present specimens. Rather, the wall in most specimens appears dark, microgranular, and homogeneous. In a few specimens it is reddish brown. The presence of well-developed umbilical fillings demonstrates that the pseudofibrous layer has been recrystallized and is no longer recognizable.

Monotaxinoides transitorius Brazhnikova and Yartseva, 1956

Pl. 3, figs. 15–19

Monotaxinoides transitorius BRAZHNIKOVA AND YARTSEVA, 1956, p. 65, pl. 1, figs. 2, 3, 5, 8; BROWNE AND POHL, 1973, pl. 26, figs. 8, 9; BRAZHNIKOVA, IN WAGNER AND OTHERS, 1979, pl. 9, fig. 5.

Monotaxinoides multivolutus (Reitlinger). MAMET, 1976, pl. 86, fig. 4, pl. 87, fig. 4, pl. 88, figs. 1–4.

Description (*n* = 8).—Test of 9–10 volutions consists of a spherical proloculus followed by a trochospirally coiled tubular chamber. Its shape is that of a low cone. Diameter is 218–305 μm. Height is 50–75 μm. Chamber height (measured in axial section parallel to the dorsal surface of the test) is 17–28 μm. Wall is dark, microgranular calcite, apparently homogeneous, 5–8 μm thick in the last volution. Umbilical filling is well developed in the ventral cavity. Interior diameter of the proloculus is 12–23 μm. Aperture is a simple opening at the end of the tubular chamber.

Discussion.—*Monotaxinoides transitorius* is distinguished from *M. prisca* Brazhnikova and Yartseva by its smaller proloculus and greater number of whorls and from *M. gracilis* (Dain) by its thinner wall and steeper cone. Mamet (1976, pl. 88, figs. 1–3) illustrated specimens with well-developed umbilical fillings under
the name *Monotaxiroides multivolutus* (Reitlinger). His specimens compare favorably with the present specimens, as well as the holotype of *M. transitorius*. Brazhnikova and Yartseva (1956, p. 65) noted the morphologic similarity between *M. transitorius* and *Ammodus multivolutus* Reitlinger but observed that *A. multivolutus* lacks a pseudofibrous wall and umbilical filling. Accordingly, Mamet’s specimens are referred to *M. transitorius*, whereas *A. multivolutus* is referred to *Turrispiroides* Reitlinger.

Occurrence.—The species is present in the Brentwood Limestone, Sassafras Shale, and Kesseler Limestone Members of the Floyd Formation, and the Trace Creek Shale Member of the Atoka Formation (table 1). It also occurs in the Bragg Member of the Sassafras Formation and the Chisum Quarry and Greenleaf Lake Limestone Members of the McCully Formation (table 2). The type material of the species was described from the upper Lower Carboniferous limestone of the Cj Suite of the Donets Basin, U.S.S.R. The species has been reported elsewhere in North America from the Etrim Formation (Atokan/Derryan) of the Canadian Cordilleran (Mamet, 1976).

Family LASIODISCIDAE?

Genus Turrispiroides Reitlinger, in Rauzer-Chernousova and Fursenko, 1959

Type species.—*Turrispira mira* Reitlinger, 1950.

Description.—Test consists of a spherical proloculus followed by a tubular second chamber. Coiling is evolute, n planispiral to slightly trochospiral. Sutures between adjacent whorls are slightly depressed. Tubular chamber is semicircular in sub-crescentic axial section. Wall is dark, microgranular calcite, undifferentiated. Aperture is a simple opening at the end of the tubular chamber.

Discussion.—Browne and Pohl (1973) placed *Turrispiroides* and *Eolasidiscus* Reitlinger in synonymy with *Monotaxioides* Brazhnikova and Yartseva. Their interpretation is not adopted here, since *Turrispiroides* clearly possesses an undifferentiated wall and *Monotaxioides* has a two-layered wall and an umbilical filling. *Turrispiroides* differs from *Eolasidiscus* in its single-layered wall and sinuosity, primary aperture.

Turrispiroides multivolutus (Reitlinger, 1949)

Pl. 2, figs. 1–5

Ammodos multivolutus Reitlinger, 1949, p. 155–156, figs. 2a–c.

Turrispiroides Reitlinger, 1949, p. 24–25, pl. 1, figs. 367, 37, 38, 39, 40.

Monotaxioides Brazhnikova and Yartseva. Browne and Pohl, 1973, pl. 6, fig. 6.

Description (n = 7).—Test consists of a spherical proloculus followed by a tubular second chamber that is coiled in a very low cone. Mature specimens possess 9–11 whorls. Diameter is 334–312 μm. Height is 58–75 μm. Rate of expansion of the tubular chamber is rapid in the initial 3 whors, moderate to low in the final 2–3 whors. Chamber height (measured in axial section parallel to the dorsal surface of the test) is 20–40 μm in the last whorl. Wall is 5–10 μm thick in the last whorl. Interior diameter of the proloculus is up to 18 μm. Aperture is a simple opening at the end of the tubular chamber.

Discussion.—*Turrispiroides multivolutus* differs from *T. mira* (Reitlinger) in possessing more whors and in coiling in a very low cone. Additionally, the wall in *T. mira* (as reported by Reitlinger, 1950) is more than four times the thickness of that in *T. multivolutus*.

Specimens illustrated as *Monotaxioides multivolutus* (Reitlinger) by Mamet (1976, pl. 88, figs. 1–4) should be referred to *Monotaxioides transitorius* Brazhnikova and Yartseva, as discussed above.

Occurrence.—The species occurs in the Prairie Grove Member of the Hale Formation, the Brentwood Limestone and Kesseler Limestone Members of the Floyd Formation, and the Trace Creek Shale Member of the Atoka Formation (table 1). It also occurs in the Bragg Member of the Sassafras Formation and in the Chisum Quarry and Greenleaf Lake Limestone Members of the McCully Formation (table 2).

The species was first described from the lower Middle Carboniferous of the central Ural region, U.S.S.R. It has been reported elsewhere in North America from Chesterian and Morrowan rocks in Nevada (Brenckle, 1973), Kentucky (Browne and Pohl, 1973), Arkansas (Brenckle, 1977), and the southeastern United States (Rich, 1980).

Turrispiroides aff. T. multivolutus (Reitlinger, 1949)

Pl. 1, fig. 12

Description (n = 2).—Test of 9% or more volutions is coiled in a very low cone. Diameter is 366–441 μm. Height is 58–75 μm. Tubular chamber expands rapidly in the initial 3 volutions, less rapidly in the outer volutions. Chamber height (measured in axial section parallel to the dorsal surface of the test) is 20–40 μm in the last whorl. Wall is 5–10 μm thick in the last whorl. Interior diameter of the proloculus is 20 μm or more. Aperture was not observed.

Discussion.—The present specimens differ from specimens assigned to *T. multivolutus* (Reitlinger) in their larger size and slightly thicker walls.
They may be an ecological variant of the latter species.

Occurrence.—Specimens were recovered from the Brentwood Limestone Member of the Boyd Formation and the Bragg Member of the Sausbee Formation (tables 1, 2).

Family HEMIGORDIOPSISAE

Genus Hemigordius Schubert, 1908, *emend.* Zaninetti, Brönnimann, Huber, and Moshtagian, 1978

Type species.—*Cornuspira schlumbergeri* Howchin, 1895.

Description (modified from Zaninetti and others, 1978).—Test is narrowly discoidal to lenticular, consisting of a spherical proloculus followed by a non-septate second chamber. Coiling is irregular; it ranges from planispiral to sigmoidal with all intermediate combinations. The initial few volutions in some specimens may be streptospirally coiled. Test may be entirely involute with well-developed side thickenings, or mostly evolute with only rudimentary side thickenings. Wall is dark, undifferentiated calcite. Aperture is a simple opening at the end of the second chamber.

Discussion.—As emended by Zaninetti and others (1978, p. 876–877), *Hemigordius* includes a broad spectrum of coiling groups and forms with poorly developed to very well-developed side thickenings. *Hemigordius* differs from *Pseudoammodiscus* Conil, which is planispiral and lacks side thickenings, and from *Hemigordiopsis* Reichel, which is completely involute with rudimentary "septa" that divide the second chamber into "pseudochambers" (Nikitina, 1969). *Hemigordius* is distinguished from *Brunzia* Mikhailov by its side thickenings.

Hemigordius harltoni Cushman and Waters, 1928a

Pl. 6, figs. 1, 2, 5–9

Hemigordius harltoni Cushman and Waters, 1928a, p. 43, pl. 5, figs. 8, 9; CUSHMAN AND WATERS, 1928b, p. 370, pl. 49, figs. 1, 2; CUSHMAN AND WATERS, 1930, p. 60–61, pl. 5, figs. 2, 3; TOOMEY, 1972, p. 296, pl. 2, figs. 16–18.

Description (n = 9).—Test of 4½–6 volutions is discoidal with a rounded periphery and straight-sided to convex flanks. Diameter is 135–200 μm. Width is 35–53 μm. Width/diameter ratio is 0.23–0.40. Coiling is slightly sigmoidal to planispiral. Side thickenings are moderately well developed; they envelop each successive volutions except the final one, which in some specimens is evolute with depressed sutures. Tubular chamber is semicircular to sub-crenestic in axial section. Rate of expansion of the tubular chamber is moderate. Volutation height is 12–20 μm in the last volutions; 10–15 μm in the penultimate volution; 7–10 μm in the antepenultimate volution. Wall is copper brown to amber in transmitted light, 2.5–5 μm thick in the last volution. Interior diameter of the proloculus is

Hemigordius sp. A

Pl. 6, figs. 10–15

Description (n = 6).—Test of 5–9 volutions is narrowly discoidal with an irregular peripheral outline. Diameter is 175–277 μm. Width (measured through the juvenarium) is 45–60 μm. Coiling is streptospiral to sigmoidal and involute in the initial 2–3 volutions, sigmoidal to nearly planispiral and evolute in the outer volutions. The final 1–2 volutions may be offset with respect to the previous whorls, resulting in asymmetry of the test. Side thickenings envelope the initial 2–4½ volutions of typical specimens. Other specimens have only rudimentary side thickenings. Sutures are depressed in the outer, evolute volutions. Rate of expansion of the tubular chamber is moderate. Chamber height is 20–35 μm in the last volution; 18–28 μm in the penultimate volution; 13–20 μm in the antepenultimate volution. Chamber shape is semicircular to nearly circular in axial section. Wall is 2.5–5 μm thick in the last volution. Interior diameter of the proloculus is up to 43 μm. Aperture is a simple opening at the end of the second chamber.

Discussion.—*Hemigordius harltoni* differs from *H. simplex* Reitlinger and *H. sp. A* (this study) in its early streptospiral to sigmoidal coiling, and from *H. liratus* Cushman and Waters in its rounded periphery.

Specimens referred to *H. harltoni* by various authors vary in size from about 175–1000 μm. The present specimens are smaller than the types but compare well with specimens illustrated by Galloway and Harlton (1928) and Toomey (1972).

Occurrence.—The species occurs in the Brentwood Limestone and Dye Shale Members of the Boyd Formation (table 1). It also occurs in the Brewer Bend Limestone Member of the Sausbee Formation and the Greenleaf Lake Limestone Member of the McCully Formation (table 2).

The species was originally described from the Upper Pennsylvanian Graham Formation of the Cisco Group, Jack County, Texas. It occurs elsewhere in North America in upper Morrowan through Upper Pennsylvanian rocks in Texas (Cushman and Waters, 1928a, 1928b, 1930; author's unpublished information), Oklahoma (Galloway and Harlton, 1928), Kansas (Toomey, 1972; Brenckle, personal communication, 1981), Nevada (Brenckle, 1973), and Idaho (Brenckle, personal communication, 1981).
Cuneiphycus

up to 30 μm. Aperture is a simple opening at the end of the tubular chamber.

Discussion.—Hemispondylus sp. A differs from H. harlioni Cushman and Waters in its slightly sigmoidal to planispiral coiling and smaller size. The present specimens resemble H. discoides (Brazhnikova and Potievskaya) as illustrated by Reitlinger (1950, pl. 3, figs. 13, 1-4), but they are significantly smaller.

Occurrence.—The species is abundant in the Greenleaf Lake Limestone Member of the McCully Formation (table 2). Two specimens were recovered from the "caprock" bed of the Dye Shale Member of the Boyd Formation (table 1).

Kingdom PLANTAE
Division CHLOROPHYTA
Family D—ASYCLADACEAE
Genus Paraepipiptastopora Roux, 1979

Type species.—Epirastopora kansasensis Johnson, 1946b.

Description.—The tube is cylindrical, non-bifurcating, unsegmented; it consists of a central stem and radially arranged, non-ramified branches in closely spaced whorls. The branches are straight, isodiametric, perpendicular to the central axis, and rounded to polygonal in tangential section. Sporangia are unknown.

Discussion.—Paraepipiptastopora differs from Epipiptastopora Pla and Epipiptastoporella Roux in its straight, isodiametric branches. The branches in Epipiptastopora are hollow-shaped, whereas in Epipiptastoporella they are ovoidal or lemon-shaped.

Paraepipiptastopora sp. A
Pl. 6, fig. 19; pl. 7, fig. 1

Description (n = 4).—The branches are arranged in closely spaced whorls that alternate so that they appear as spiral rows around the central stem. They are 7–51 μm in diameter. The distance between adjacent branches in a whorl is 11–16 μm. Thickness of the cortex is at least 550 μm.

Discussion.—The present material is not sufficiently abundant to permit speciation. The specimens resemble P. regispira (Johnson) in diameter and in the regular arrangement of the branches.

Occurrence.—Specimens were recovered from the Kessler Limestone Member of the Boyd Formation (table 1).

Family Rhodophycophyta

Genus Donezella Maslov, 1929

Type species.—Donezella lutugini Maslov, 1929.

Description.—Thallus is cylindrical, bifurcates at an angle of 45–90°, and is subdivided into cylindrical cells by evenly spaced, perforate partitions. It is slightly constricted where partitions meet the tube wall. Wall is calcareous, two-layered; it consists of an outer, yellowish, hyaline layer and an inner, dark, porous layer. Pores in the inner layer are straight and not bifurcating. Reproductive structures are unknown.

Discussion.—Donezella differs from Beresella Machaev in its bifurcating thallus and from Dvinia Khvorova in its bifurcating thallus and non-bifurcating pores of the inner wall layer. Khvorova (1949), Mamet and Rudloff (1972), and Mamet and Roux (1975b) further discuss the morphologies of Donezella, Beresella, and Dvinia.

Donezella aff. D. lunaensis Racz, 1965
Pl. 6, figs. 16–18
See Mamet and Roux, 1975b, p. 265, for synonymy.

Description (n = 12).—Outside diameter of the tube is 70–160 μm. Cell length is 78–133 μm. Thickness of the partitions is 8–28 μm, typically 15 μm. Thickness of the outer wall layer is 5–16 μm, typically 8 μm or less. Thickness of the dark inner wall layer is 11–32 μm, typically 20 μm.

Discussion.—The diameters of the tubes in the present material are intermediate between those in D. lutugini Maslov and D. lunaensis Racz. The present specimens compare well with specimens figured as Donezella aff. D. lunaensis Racz by Mamet and Roux (1975b, pl. 13, figs. 13–18).

Occurrence.—The species occurs in the Brentwood Limestone and Kessler Limestone Members of the Boyd Formation (table 1). It also occurs in the Bragg’s and Brewer Bend Limestone Members of the Sausebee Formation and the Chisum Quarry Member of the McCully Formation (table 2).

Division Rhodophycophyta
Family undetermined
Genus Cuneiphycus Johnson, 1960

Type species.—Cuneiphycus texana Johnson, 1960.

Description (text-fig. 4).—Thallus is a complex network of irregular, sheet-like layers of cells, one cell thick. Sheets form through the growth of arcuate rows of cells. Cells are wedge-shaped; they appear as tapered rectangles in horizontal section (text-fig. 4A), square to rectangular in vertical section (text-fig. 4B). Wall is calcareous, light to dark brown in transmitted light, sparry, undifferentiated. Concentric walls (i.e., walls separating rows of cells) are generally thicker than radial walls (i.e., walls separating cells within a row). Intercellular pores are absent. Reproductive structures are unknown.
Discussion.—Johnson (1960, p. 54) originally described *Cuneiphycus* as a low bushy plant: "slender, probably segmented, consisting of cylindrical or wedge-shaped, branched members." Kotila (1973) and Wray (1977) subsequently demonstrated that the plant actually consists of a three-dimensional network of cell layers. It seems likely that the layers or sheets became established on fine-grained calcareous substrates and served to bind sediment. With continued sedimentation the sheets became buried, and branches (or daughter sheets?) grew up through the sediment until they reestablished the horizontal sheet-like growth habit on the sediment surface. Alternation of sheet growth and branching probably yields the complex network seen in thin section.

Cuneiphycus resembles *Genus A*, n. gen., in cell arrangement and possibly in growth habit. *Genus A*, n. gen., however, possesses pores that connect contiguous cells in adjacent rows. The cell walls in *Genus A*, n. gen., are heavily calcified and yellowish (hyaline), whereas in *Cuneiphycus* they are less heavily calcified and are light to dark brown (sparry).

Cuneiphycus texana Johnson, 1960

Pl. 8, figs. 5, 10, 11

Cuneiphycus texana Johnson, 1960, p. 54, pl. 21, figs. 1–3; Johnson, 1963, pl. 5, figs. 1–3.

Description (n = 11).—Internal length of cells is 47–144 μm, typically 70–100 μm. Internal width of cells is 23–90 μm, typically 30–70 μm. Concentric wall thickness is 12–32 μm. Radial wall thickness is 7–23 μm.

Discussion.—*Cuneiphycus texana* is locally a major constituent in carbonate grainstone and packstone (boundstone?) facies. It typically occurs as fragments measuring up to 1 cm in the greatest dimension.

Cuneiphycus texana differs from *C. aliquantulus* Johnson in having larger cells.

Occurrence.—The species is extremely abun-
Cuneiphycus aliqquantulus Johnson, 1960

Pl. 9, figs. 1, 2

Cuneiphycus aliqquantulus JOHNSON, 1960, p. 58, pl. 22, figs. 1–3; RACZ, 1965, p. 88, pl. 8, figs. 6, 7.

Description (n = 5).—Internal length of cells is 31–59 μm. Internal width of cells is 15–32 μm. Concentric wall thickness is 8–20 μm. Radial wall thickness is 7–12 μm.

Discussion.—_Cuneiphycus aliqquantulus_ differs from _C. texana_ JOHNSON in having smaller cells.

Occurrence.—The species is rare in the lower part of the Brentwood Limestone Member of the Floyd Formation (table 1). A single specimen was recovered from the Bragg Member of the Sausbee Formation (table 2).

The species was originally described from the Hueco Mountains of Texas (Lower–Middle Pennsylvanian)?

Genus A, n. gen.

Description (text—fig. 4).—Thallus is a sheet-like layer of cells, one cell thick. Cells are aligned side by side in arcuate rows. They are rectangular to wedge-shaped, appearing square to rectangular in horizontal section (text–fig. 4C) and rectangular in vertical section (text–fig. 4D). Cell length is generally greater than cell width. Intercellular pores connect contiguous cells in adjacent rows. Wall is calcareous, yellowish, hyaline, undifferentiated. Concentric walls (i.e., walls separating rows of cells) are typically much thicker than radial walls (i.e., walls separating cells within a row). Reproductive structures are unknown.

Discussion.—Polished rock slabs, which provide a three-dimensional view of the specimens, show that the thalli occur typically as unbranched, abraded fragments. Accordingly, the plants are interpreted to have grown as discrete sheets on the sediment surface, although some views in thin section suggest that the thalli may be connected by slender branches.

The genus is distinguished from _Cuneiphycus_ Johnson by its intercellular pores. Sections that do not pass through the pores may be difficult to identify positively.

Representatives of the genus were illustrated by Maslov (1973, p. 27, pls. 21, 65) under the names "Cribropodum," "Contortopodium," and "Coneiphycus." Unfortunately, he published no formal descriptions of these genera. The genus will be formally described in a forthcoming publication by B. L. Marnet and me.

Representatives of the genus have been recognized elsewhere in Lower and Middle Pennsylvanian rocks of the Marble Falls Formation (central Texas, the Bloom Member of the Snaky Canyon Formation (east-central Idaho), and the Middle Carboniferous of the Donets Basin, U.S.S.R. (author's unpublished information; Maslov, 1973).

Genus A, sp. A, n. gen., n. sp.

Pl. 10, figs. 1–9

Description (n = 18).—Internal length of cells is 19–62 μm, typically 25–50 μm. Internal width of cells is 12–51 μm, typically 15–30 μm. Diameter of intercellular pores is 4–12 μm. Concentric wall thickness is 8–24 μm, typically 15 μm or more. Radial wall thickness is 4–12 μm, typically less than 8 μm.

Discussion.—The species is widespread in carbonate wackestones, packstones, and grainstones, but it is not a major rock-building organism. Specimens occur typically as broken fragments measuring less than 1 cm in the greatest dimension.

Occurrence.—The species occurs abundantly in the Prairie Grove Member of the Hale Formation and the Brentwood Limestone Member of the Floyd Formation (table 1). It also occurs in the Bragg Member of the Sausbee Formation (table 2).

Genus Archaeolithophyllum Johnson, 1956a

Type species.—_Archaeolithophyllum mossouriensis_ Johnson, 1956a (recte Archaeolithophyllum mossouriense).

Description.—Thallus is an irregular sheet or crust of cells. It is differentiated into a thick central hypothallium and a thinner outer perithallium. The hypothallium is coxal, that is, consisting of arcuate layers of cells. Its cells are large, polygonal, typically hexagonal both in transverse and longitudinal section. Perithallial cells are smaller, rectangular, aligned in rows parallel to the outer surface of the thallus. The wall is calcareous, undifferentiated. Sporangia are collected into conical conceptacles with a single aperture, which are distributed over the upper surface of the thallus.

Discussion.—Johnson (1956a) originally assigned _Archaeolithophyllum_ to the crustose coralline algae (Corallinaceae) on the basis of its remarkable similarity to the Holocene coralline _Lithophyllum_. He (1963, p. 6) later placed _Archaeolithophyllum_, with _Cuneiphycus_ Johnson and _Foliophycus_ Johnson, under "red algae of uncertain affinities." The taxonomic position of the genus is still unclear, and recent authors (e.g., Wray, 1971, 1975, 1977; Riding, 1975) refer to its representatives informally as ancestral corallines.
Archaeolithophyllum is distinguished from most other Paleozoic red algae by its lamellar growth form, coaxial tissue, and perithallium with conceptacles. It differs from Principia encrusted in its coaxial tissue, hexagonal cells, and sheet-like growth habit.

Archaeolithophyllum missouriense Johnson, 1956a

Description (n = 13).—Internal length of hypothallial cells is 42–129 μm, typically 50–80 μm. Internal width of hypothallial cells is 19–74 μm, typically 30–55 μm. Length of perithallial cells is 19–24 μm. Width of perithallial cells is 11–16 μm. Hypothallial and perithallial cell walls are nearly equally thick: 4–12 μm, typically 8 μm or less. Reproductive structures were not observed.

Discussion.—Archaeolithophyllum missouriense is distinguished from A. delicatum Johnson by its thicker thallus and larger hypothallial cells. Both species grew free or attached as single crusts on the depositional surface. Archaeolithophyllum missouriense and A. lamellosum Wray differ in size and growth habit. The latter species is much smaller and grows as foliate, multilayered crusts.

Occurrence.—The species occurs in the Prairie Grove Member of the Hale Formation and the Brentwood Limestone and Kessler Limestone Members of the Floyd Formation (table 1). It also occurs in the Bragg’s and Brewer Bend Limestone Members of the Sausbee Formation and the Chism Quarry Member of the McCullay Formation (table 2).

The species was first described from the Missourian (Upper Pennsylvanian) Exline Limestone of Missouri. It occurs in Upper Mississippian rocks and is abundant in Pennsylvanian and Permian carbonate-shelf facies (Wray, 1977).

Archaeolithophyllum sp. A

Description (n = 3).—Hypothallial cell length is 31–40 μm. Hypothallial cell width is 12–35 μm. Perithallial cells were not measured confidently. Wall is up to 8 μm thick.

Discussion.—The present specimens closely resemble A. delicatum Johnson in the small size of their thalli and hypothallial cells. They also resemble A. lamellosum Wray in cell size but do not occur in multiple layers. Unfortunately, there is insufficient material for positive identification.

Occurrence.—The species occurs in the Prairie Grove Member of the Hale Formation and the Brentwood Limestone and Kessler Limestone Members of the Floyd Formation (table 1).

Division CYANOPHYTA

“Section” POROSTROMATA

Genus Girvanella Nicholson and Etheridge, 1878

Type species.—Girvanella problematica Nicholson and Etheridge, 1878.

Description.—Thallus consists of a simple, non-branching tube that lacks partitions and is of uniform diameter. The tubes grow in encrusting masses, intertwined with other algae and encrusting foraminifers or alone as felt-like networks or crusts. The wall is calcareous, dark, microgranular, undifferentiated.

Discussion.—Despite its simplicity, the morphology of Girvanella has been interpreted quite differently by various authors. Some (e.g., Rothpletz, 1891; Maslov, 1949; Wood, 1967, 1968; Wray, 1977) report that the tubes are branched, whereas others (e.g., Mamet and Roux, 1975a; Armstrong and Mamet, 1977) contend they are not. Examination of the present material and published photomicrographs has failed to demonstrate unequivocal branching. Rather, I believe the appearance of branching may be caused by the chance intersection of diverging and cross-cutting tubes with the plane of the thin section (e.g., Wood, 1957, pl. 5, fig. 5, and pl. 6, fig. 1). Maslov (1949, p. 89) reported transverse partitions in two specimens; however, no published illustrations document their existence. If such partitions were present in living Girvanella they invariably have been obliterated by diagenesis and are of no consequence in characterizing fossil material. Extensive revision of the taxonomy of the genus is presented by Mamet and Roux (1975a).

Girvanella is distinguished from Miticheldeania Wethered, Ortonella Garwood, Garwoodia Wood, and similar forms primarily by its non-branching habit. Representatives of the genus commonly occur in encrusting masses with other algae and foraminifers. These associations have been referred to the form-genera Osagia Twenhofel and Ottonosis Twenhofel (Henbest, 1963).

Girvanella minuta Wethered, 1890

Description (n = 3).—Hypothallial cell length is 31–40 μm. Hypothallial cell width is 12–35 μm. Perithallial cells were not measured confidently. Wall is up to 8 μm thick.

Discussion.—The present specimens closely resemble A. delicatum Johnson in the small size of their thalli and hypothallial cells. They also resemble A. lamellosum Wray in cell size but do not occur in multiple layers. Unfortunately, there is insufficient material for positive identification.

Occurrence.—The species occurs in the Prairie Grove Member of the Hale Formation and the Brentwood Limestone and Kessler Limestone Members of the Floyd Formation (table 1).

Division CYANOPHYTA

“Section” POROSTROMATA

Genus Girvanella Nicholson and Etheridge, 1878

Type species.—Girvanella problematica Nicholson and Etheridge, 1878.

Description.—Thallus consists of a simple, non-branching tube that lacks partitions and is of uniform diameter. The tubes grow in encrusting masses, intertwined with other algae and encrusting foraminifers or alone as felt-like networks or crusts. The wall is calcareous, dark, microgranular, undifferentiated.

Discussion.—Despite its simplicity, the morphology of Girvanella has been interpreted quite differently by various authors. Some (e.g., Rothpletz, 1891; Maslov, 1949; Wood, 1967, 1968; Wray, 1977) report that the tubes are branched, whereas others (e.g., Mamet and Roux, 1975a; Armstrong and Mamet, 1977) contend they are not. Examination of the present material and published photomicrographs has failed to demonstrate unequivocal branching. Rather, I believe the appearance of branching may be caused by the chance intersection of diverging and cross-cutting tubes with the plane of the thin section (e.g., Wood, 1957, pl. 5, fig. 5, and pl. 6, fig. 1). Maslov (1949, p. 89) reported transverse partitions in two specimens; however, no published illustrations document their existence. If such partitions were present in living Girvanella they invariably have been obliterated by diagenesis and are of no consequence in characterizing fossil material. Extensive revision of the taxonomy of the genus is presented by Mamet and Roux (1975a).

Girvanella is distinguished from Miticheldeania Wethered, Ortonella Garwood, Garwoodia Wood, and similar forms primarily by its non-branching habit. Representatives of the genus commonly occur in encrusting masses with other algae and foraminifers. These associations have been referred to the form-genera Osagia Twenhofel and Ottonosis Twenhofel (Henbest, 1963).

Girvanella minuta Wethered, 1890

Description (n = 3).—Hypothallial cell length is 31–40 μm. Hypothallial cell width is 12–35 μm. Perithallial cells were not measured confidently. Wall is up to 8 μm thick.

Discussion.—The present specimens closely resemble A. delicatum Johnson in the small size of their thalli and hypothallial cells. They also resemble A. lamellosum Wray in cell size but do not occur in multiple layers. Unfortunately, there is insufficient material for positive identification.

Occurrence.—The species occurs in the Prairie Grove Member of the Hale Formation and the Brentwood Limestone and Kessler Limestone Members of the Floyd Formation (table 1).
"Stachoeides" spissa

Description (n = 3).—The tubes are intertwined in encrusting, felt-like masses. Their interior diameter is 5–8 μm. The wall is less than 3 μm thick.

Discussion.—The remarkable constancy of the diameters of tubes within a cluster led early workers to erect a number of narrowly defined species that differ in tube diameter by only 1 or 2 μm. In practice, differences of 1 or 2 μm fall within the range of measurement error and cannot form the basis for reliable speciation. Several authors (e.g., Maslov, 1949; Woodward, 1963; Mamet and Roux, 1975a) have sought to reduce the proliferation of names by broadening the range of tube diameters for a single species. The proposal followed here is that of Maslov (1949), which recognizes *G. minuta* as having priority over *G. staminea* Garwood and *G. maplewoodensis* Johnson with internal tube diameters of 6–9 μm. Thus defined, *G. minuta* differs from other representatives of the genus in its minute tubes.

Occurrence.—The species is present in the Brentwood Limestone Member of the Blythe Formation (Table 1) at the Bragg Member of the Saushee Formation (Table 2). It was originally described from the Jurassic of Great Britain and ranges at least as low as the Tournaisian (Lower Carboniferous) (Mamet and Roux, 1975a).

Kingdom **Plantae**?

Division **Rhodophyceae**

Family **Ouagialaceae**

Genus *Stachoeides* Cummings, 1955

Type species.—*Stac. heia polytrumatoides* Brady, 1876.

Description.—Thallus is fusiform to irregularly shaped and consists of irregular, reticulate cells that concentrically encrust a central host or hosts. Cell walls are composed of concentric radial elements, of which the concentric are typically thicker. Wall is calcareous, undifferentiated, yellowish, hyaline. Apical pores (reproductive structures?) are present in subconical protuberances at the periphery of the thallus.

Discussion.—*Stac. heoides* differs from *Epistachoeides* Petryk and Mamet in lacking a thick outer zone of radially oriented elements, and from *Pseudostachoeides* Petryk and Mamet in its reticulate cellular arrangement. *Stachoeides* differs from *Ouagiaia* Termier and Termier in its less regular growth habit.

Stachoeides aff. *S. tenuis* Petryk and Mamet, 1972

Pl. 7, figs. 2, 4, 6, 8

Stachoeides tenuis Petryk and Mamet, 1972, p. 787, pl. 6, figs. 1–6; pl. 7, figs. 1–4, 57, 6; Mamet and Rudloff, 1972, p. 90, pl. 7, figs. 4–8; Rich, 1974, pl. 4, figs. 1–3, 47; Mamet, 1976, pl. 30, fig. 3, pl. 32, fig. 2, pl. 35, fig. 2, pl. 67, fig. 2; Brencikle, 1977, p. 4, figs. 13–15; Armstrong and Mamet, 1977, p. 106, pl. 17, fig. 8, pl. 38, figs. 87, 97, 10; Mamet and Roux, 1977, p. 225, pl. 2, figs. 10–14; Perret and Vachard, 1977, p. 32–33, pl. 5, fig. 5.

Stachoeides spissa Petryk and Mamet, 1972, pl. 7, fig. 9 (only).

Description (n = 15).—Cell height (= laminar cell thickness of Petryk and Mamet, 1972) is 23–63 μm, typically 30–50 μm, and is variable along the length of the cell. Radial-element thickness is 7–20 μm, typically 10–12 μm. Concentric-element thickness is 7–28 μm, typically greater than 15 μm. Subconical protuberances at the periphery of the thallus are 420–450 μm in diameter.

Discussion.—Petryk and Mamet (1972, p. 787) distinguished *S. tenuis* by its minute cell size, even vesication, and concentration of tubes and protuberances. The present specimens resemble the type material with respect to vesication and concentration of protuberances but differ in having larger cells and thicker concentric and radial elements. The present material is intermediate between *S. tenuis* and *S. meandriformis* Petryk and Mamet in cell size and element thickness.

Occurrence.—The species occurs in the Prairie Grove Member of the Hale Formation and the Kessler Limestone Member of the Blythe Formation (Table 1).

Stachoeides tenuis has been reported elsewhere in North America from Early and Late Mississippian rocks of the northern Cordilleran (Petryk and Mamet, 1972; Mamet and Rudloff, 1972; Mamet, 1976; Armstrong and Mamet, 1977), Arkansas (Brencikle, 1977), and the southeastern United States (Rich, 1974). The species was originally described from the Viséan (Lower Carboniferous) Mount Head Formation of southwestern Alberta.

"Stachoeides" spissa Petryk and Mamet, 1972

Pl. 8, figs. 1–4

Stachoeides spissa Petryk and Mamet, 1972, p. 785, pl. 5, figs. 1–7; Mamet, 1976, pl. 50, figs. 1, 2.

Description (n = 6).—Thallus consists of concentric layers of cells. The layers are discrete; that is, each layer has its own upper and lower walls that are separated from the walls of underlying and overlying layers by a thin micritic film. Thickness of layers is 35–78 μm. They are internally divided into roughly rectangular cells by irregularly spaced partitions. Thickness of partitions is up to 20 μm. Wall is yellowish undifferentiated calcite, 11–20 μm thick.

Discussion.—This species differs from true *Stachoeides* and other ouagials in the discrete concentric banding of the cell layers. In contrast,
adjacent concentric layers in true auugalis share a common wall that forms the top of the underlying cell and the bottom of the overlying cell. "Stacheoides" spissa may be referable to Fasciella Ivanova (= Shartymophycus Kulik), which also constructs a thallus of discrete concentric layers. The nature of the internal structure of the layers in Fasciella is unclear, but in some specimens it appears to be like that in "S." spissa (cf. Mamet and Roux, 1975a, pl. 14, figs. 2, 7, 16, 17). "Stacheoides" spissa is here maintained separately from Fasciella, pending better understanding of the internal morphology of the latter taxon.

Occurrence.—The species occurs in the Prairie Grove Member of the Hale Formation and the Brentwood Limestone and Kessler Limestone Members of the Boyd Formation (table 1). It is abundant in the Bragg and Brewer Bend Limestone Members of the Sausbee Formation and the Chism Quarry Member of the McCully Formation (table 2).

It was first described from the Viséan (Lower Carboniferous) Mount Head Formation of southwestern Alberta. It has been reported elsewhere in North America from the Viséan Etherington Formation, also of southwestern Alberta (Mamet, 1976).

Family UNGDARELLACEAE?
Subfamily STACHEINAE?
Genus "Eflugelia" Vachard, in Massa and Vachard, 1979

Type species.—Cuneiphycus johnsoni Flügel, 1966.

Description (text-fig. 5).—Thallus consists of encrusting layers of cells that grow in an offlapping pattern over a flat surface. Its growth is "hemiradial" (i.e., accretion of offlapping layers within an arc of 180°) or radial (i.e., accretion of offlapping layers in all directions). Layers are parallel and maintain nearly constant height throughout the thallus. Cells are rectangular, regularly arranged. Their height is slightly greater than their width. Wall is calcareous, hyaline, undifferentiated. Horizontal walls are typically thicker than vertical walls. Reproductive structures are unknown.

Discussion.—The taxonomic status of "Eflugelia" is unclear. The concept of "Eflugelia" employed here includes forms that encrust flat surfaces by "hemiradial" or radial accretion of offlapping layers of cells. This concept apparently agrees with Vachard's intended concept of the

Text-figure 5. "Eflugelia" Vachard. HW, horizontal wall; VW, vertical wall; CH, cell height; CW, cell width.
Asphaltilna cordillerensis

genus (Vachard, in Massa and Vachard, 1979, p. 34, pl. 9, fig. 10). Unfortunately, the holotype of Cuneiphycus johnsoni Flügel, the type species of "Eflugelia," is probably referable to Fourstonella Cummings, whereas the paratypes of C. johnsoni agree more closely with Vachard's concept of "Eflugelia." Thus, Eflugelia sensu stricto may be a junior synonym of Fourstonella. Until the taxonomic problems are resolved, I am retaining the term "Eflugelia" for forms that fit Vachard's intended concept of the genus and differ clearly from Fourstonella.

"Eflugelia" is distinguished from Fourstonella by its growth habit, which in Fourstonella is that of unidirectional accretion of offlapping layers of cells around a central host. "Eflugelia" differs from Cuneiphycus Johnson, which is a branching sheet-like form, one layer thick. The internal structure, descriptive terminology, and growth habit of "Eflugelia" are illustrated in text-figure 5.

"Eflugelia" sp. A

Pl. 8, figs. 6–9

Description (n = 8).—Thallus encrusts a flat or nearly flat surface, typically an invertebrate skeleton. Cell height is 12–25 μm. Cell width is 7–16 μm. Thickness of horizontal wall is 7–13 μm. Thickness of vertical wall (albeit poorly preserved) is 2.5–5 μm.

Discussion.—The present specimens have smaller cells but otherwise resemble specimens figured as Cuneiphycus johnsoni Flügel by Flügel (1966, pl. 2, figs. 2—5 only), Toomey (1969, pl. 151, figs. 3, 4), and Mamel and Roux (1977, pl. 9, figs. 8–11); and specimens figured as Eflugelia johnsoni (Flügel) by Vachard (in Massa and Vachard, 1979, pl. 9, fig. 10) and Flügel and Flügel-Kahler (1980, pl. 8, figs. 9, 10).

Occurrence.—The species occurs in the Prairie Grove Member of the Hale Formation and the Brentwood Limestone and Kessler Limestone Members of the Floyd Formation (table 1). It also occurs in the Braggs and Brewer Bend Limestone Members of the Sausbee Formation (table 2).

Incetae Sedis

Genus Calcisphaera Williamson, 1880

Type species.—Calcisphaera laevis Williamson, 1880.

Description.—Calcisphaera laevis Williamson, 1880.

Calcisphaera is a controversial taxon both with respect to its nomenclatorial status and its biological affinities. Williamson (1880, p. 520) erected the genus, supposing it to belong to the Radiolaria. Since then, the genus has been described under several names and referred to both plant and animal groups. Nomenclatorial histories of Calcisphaera are presented by Baxter (1960) and Armstrong and Mamel (1977). Several workers have demonstrated the resemblance between calcispheres and reproductive cysts of Holocene dasycladacean algae (Rupp, 1967; Rezak, in Ginsburg and others, 1971; Marszalek, 1975; Wray, 1977).

If the pores are not preserved, Calcisphaera may be impossible to distinguish from transverse sections of Earlandia Plummer.

Calcisphaera laevis Williamson, 1880

Pl. 10, figs. 12, 13

See Armstrong and Mamel, 1977, p. 110, for synonymy.

Description (n = 11).—The outside diameter of the sphere is up to 140 μm. The wall is 20–35 μm thick. Inner and outer surfaces of the sphere are smooth. No pores were observed.

Discussion.—Calcisphaera laevis differs from C. pachysphaerica (Prunina) in its smaller diameter.

Occurrence.—The species occurs in the Prairie Grove Member of the Hale Formation and the Brentwood Limestone and Kessler Limestone Members of the Floyd Formation (table 1). It also occurs in the Braggs and Brewer Bend Limestone Members of the Sausbee Formation (table 2).

The type material of the species was described from the Carboniferous of Great Britain.

Genus Asphaltilna Mamel, in Petryk and Mamel, 1972

Type species.—Asphaltilna cordillerensis Mamel, in Petryk and Mamel, 1972.

Description.—Thallus (?) is a cluster of nearly parallel, intertwined, closely packed, cylindrical to subcylindrical tubes. Individual tubes are divided by thin partitions that are irregularly spaced and randomly oriented. Small nodes are present on the interior of the cylinder walls in some specimens. Wall is calcareous, two-layered; it is composed of a thin, dark outer layer and a thicker, pseudofibrous inner layer. Reproductive structures are unknown.

Discussion.—Asphaltilna differs from Sphaeroporella Antropov in its cylindrical rather than ovoid or cystoid cells; from Asphaltilnella Mamel and Roux in its two-layered wall; and from Wetherelleda Wood in its two-layered imperforate wall and partitions.

Asphaltilna cordillerensis Mamel, in Petryk and Mamel, 1972

Pl. 7, figs. 3, 5, 9

Asphaltilna cordillerensis Mamel, in Petryk and Mamel, 1972, p. 795–797, pl. 10, figs. 3–6; Mamel and Rudloff, 1972, p. 88, pl. 10, figs. 8–11; Armstrong
and Mamet, 1974, p. 657, fig. 7a; Rich, 1974, p. 373, pl. 5, figs. 57, 77, 87, 107; Mamet and Roux, 1975a, p. 164, pl. 12, fig. 2; Armstrong and Mamet, 1975, p. 15, fig. 11g; Mamet, 1976, pl. 87, fig. 2; Brenckle, 1977, pl. 4, figs. 18, 21; Armstrong and Mamet, 1977, p. 109, pl. 39, figs. 12–14; Mamet and Roux, 1978, p. 77–78, pl. 4, figs. 8–10.

Description (n = 13).—Thickness of the partitions is 4–20 µm. The dark outer layer of the tube wall is 3–5 µm thick, whereas the thickness of the inner pseudofibrous layer is 27–74 µm, typically 40–60 µm. Interior diameter of the tubes is 148–332 µm, typically 200–300 µm.

Discussion.—Representatives of the species are among the most abundant microfossils encountered in this study. They were apparently tolerant of a wide range of environmental conditions, as they are found in carbonate rocks of all grain sizes and textures.

Occurrence.—The species occurs in the Prairie Grove Member of the Hale Formation and the Brentwood Limestone and Kessler Limestone Members of the Boyd Formation (table 1). It also occurs in the Braxggs and Brewer Bend Limestone Members of the Sausbee Formation and the Chishum Quarry and Greenleaf Lake Limestone Members of the McCullum Formation (table 2).

The type material of the species was described from the Viséan (Lower Carboniferous) Mount Head Formation of Alberta.

Genus Nostocites Maslov, 1929.

Type species.—*Nostocites vesicolusa* Maslov, 1929.

Description (text-fig. 6).—Thallus (?) consists of sinuous, irregularly branching tubes that are divided into a series of oblong tubes by irregularly spaced, perforate partitions. Tubes are constricted where partitions intersect the wall. Wall is calcareous, yellowish, hyaline, undifferentiated.

Discussion.—Specimens assume a wide range of appearances in thin section, owing to the highly irregular branching of the tubes and the irregular spacing of the partitions. These features distinguish Proninella from the Palaeobesedellae (see Mamet and Roux, 1974). Mamet and Roux (1978, p. 83) interpreted Proninella Vachard to be a junior synonym of Proninella. Their interpretation is followed here.

Proninella strigosa (Vachard, in Perret and Vachard, 1977)

Pl. 9, figs. 11, 12

Description (n = 8).—Branching of the tubes is highly irregular. Their external diameter is 59–195 µm, typically 50–90 µm. Thickness of the partitions is 15–27 µm. Wall thickness is 8–15 µm.

Discussion.—According to Mamet and Roux (1978, p. 86), Proninella strigosa differs from *P. enigmatica* Mamet and Roux in its less regular cells and partitions. Both species have similar dimensions.

Occurrence.—The type material of the species was described from the lower Namurian Ardengost Limestone in the Pyrénées of southern France.

Genus Proninella Reitlinger, in Menner and Reitlinger, 1971

Type species.—*Proninella tamarac* Reitlinger, in Menner and Reitlinger, 1971.

Description.—Thallus (?) consists of sinuous, irregularly branching tubes that are divided into a series of oblong tubes by irregularly spaced, perforate partitions. Tubes are constricted where partitions intersect the wall. Wall is calcareous, yellowish, hyaline, undifferentiated.

Discussion.—Specimens assume a wide range of appearances in thin section, owing to the highly irregular branching of the tubes and the irregular spacing of the partitions. These features distinguish *Proninella* from the Palaeobesedellae (see Mamet and Roux, 1974). Mamet and Roux (1978, p. 83) interpreted Proninella Vachard to be a junior synonym of *Proninella*. Their interpretation is followed here.

Nostocites cf. *N. vesicolusa* Maslov, 1929

Pl. 7, figs. 7, 10–12

Nostocites vesicolusa Maslov, 1929, p. 1598, pl. 70, figs. 2–7, 8, 10, text-figs. 1–3, 7; Maslov, in Ollov (ed.), 1963, p. 46, fig. 29; Mamet and Roux, 1978, p. 80, figs. 17, 2, 3.

Description (n = 10).—Cell diameter is 39–98 µm, typically 50–70 µm. Height is 117–149 µm. Diameter of subcylindrical inclusions (pores?) is 15–20 µm. Wall is up to 40 µm thick.
Osagia

Discussion.—The present material differs from its slightly larger cells.

Occurrence.—The species occurs in the Brentwood Limestone and Kessler Limestone Members of the Boyd Formation (table 1) and the Braggs Member of the Sau bee Formation (table 2).

It was originally described from the Carboniferous of the Donets Basin, U.S.S.R. and has been illustrated elsewhere from Viséan (Lower Carboniferous) rocks of Great Britain (Mamet and Roux, 1978).

Form-Genus Osagia Twenhofel, 1919

Pl. 10, figs. 10, 11

Type species.—O. sagia encrustata Twenhofel, 1919.

Description.—Colonies are spherical, ellipsoidal, or biscuit-shaped nodules composed mostly of girvanellid algae and encrusting foraminifers. Nodules vary in size from less than 1 mm to several centimeters. Nuclei may be fragments of invertebrate skeletons, detrital grains, or other algae.

Discussion.—Osagia differs from the form-genus Ottonosia Twenhofel in that it completely encrusts its host. Ottonosia, in contrast, encrusts only the upper surface of its host and typically forms a larger colony. The distinction between the genera is purely arbitrary, as there is no biological basis for separating them.

Occurrence.—Osagia is present in the Brentwood Limestone, Dye Shale, and Kessler Limestone Members of the Boyd Formation (table 1). It also occurs in the Braggs and Brewer Bend Lime-
stone Members of the Sausbee Formation and the Greenleaf Lake Limestone Member of the McCully Formation (table 2).

Family Salberidae Bogush and Brenckle, 1982

Genus Tubisalebra Bogush and Brenckle, 1982

Type species.—Tubisalebra conitabulata Bogush and Brenckle, 1982.

Description (modified from Bogush and Brenckle, 1982).—Skeleton consists of a chain of cylindrical, chevron-shaped, or coronal segments. Internally, the segments are composed of a longitudinally partitioned central tube that is surrounded by a cluster of nearly parallel, non-partitioned tubes. Segments are joined by flat, meniscus-shaped, or tapering connecting layers. Skeletons are typically fragmented, so that only unconnected segments are preserved.

Discussion.—Tubisalebra differs from the related genera Salebra Bogush and Spumisalebra Bogush and Brenckle in lacking vesicles. Salebra consists of a longitudinally partitioned central tube that is surrounded by a cluster of both tubes and vesicles, whereas Spumisalebra consists of a longitudinally partitioned tube surrounded only by vesicles.

Tubisalebra calamiformis Bogush and Brenckle, 1982

Pl. 10, figs. 14–17

Tubisalebra calamiformis Bogush and Brenckle, 1982, pl. 6, figs. 2–7, pl. 7, figs. 1–8.

Description (n = 4).—Segment height is 390–450 μm. Segment diameter is 195–281 μm. Large and small diameters of the central tube are 86–105 and 59–78 μm, respectively. Internal diameter of the non-partitioned tubes is 16–27 μm. Wall thickness of the central tube is 10–13 μm. Wall thickness of the non-partitioned tubes is 7–10 μm. Connecting layers are flat to weakly meniscus-shaped.

Discussion.—Tubisalebra calamiformis differs from T. conitabulata Bogush and Brenckle and T. ruficorona Bogush and Brenckle in the cylindrical shape of the segments. Segments in T. conitabulata are chevron-shaped, whereas in T. ruficorona they are coronal.

Occurrence.—The species is present in the Trace Creek Shale Member of the Atoka Formation (table 1). Specimens 15–17 of plate 10 come from the Trace Creek of the west branch of Sawney Hollow (not mentioned in the section on Localities: SE 4 NE 1 SW 1 sec. 25, T. 15 N., R. 26 E., Adair County, Oklahoma.

REFERENCES CITED

Brenchle, P. L., and Groves, J. R., 1981, Evolution of estoaffilid foraminifers in late Chesterian (Late Missis-

Brenchle, P. L., Groves, J. R., and Skipp, Betty, 1982, A Mississippian/Pennsylvanian (Mid-Carboniferous) boundary in North America based on calcareous Fora-

Pennsylvanian boundary as an intercontinental biostratigraphic datum: Newsletters on Stratigraphy, v. 6, no. 2, p. 106–116.

Browne, R. G., Baxter, J. W., and Roberts, T. G., 1977, The Archaeasidaceae of the Fraileys Facies (Missis-
ippian) of central Kentucky: Bulletins of American Paleontology, v. 72, no. 298, p. 171–228, 4 pls.

Browne, R. G., and Pohli, E. R., 1973, Stratigraphy and genera of calcareous Foraminifera of the Fraileys Fa-

Bykova, E. V., 1955, On the Foraminifera, Radiolalia, and Ostracoda in the Devonian Period of the Volga-
Ural region [in Russian]: Vsesoyuzny Nef
tyanoy Nauchno-Isledovatel’skiy Geologorazvedchony In-
itut, Trudy 87, Mikrofauna SSR, no. 6, p. 1–141, 24 pls.

Bykova, E. V., and others, 1958, New species and genera of foraminifers [in Russian]: Vsesoyuzny Nef
tyanoy Nauchno-Isledovatel’skiy Geologorazvedchony In-
itut (VNIGRI), Trudy, v. 115, Mikrofauna SSR, no. 9, 81 p., 12 pls.

Chernysheva, N. E., 1948, Some new species of Forami-
nifera from the Visayan of the Makarov District [in Russian]: Akademiya Nauk SSSR, Geologicheskiy In-
itut, Trudy 62, no. 19, p. 246–250, 1 pl.

Cummings, R. H., 1955, Stachoeides, a new forami-

Cushman, J. A., and Waters, J. A., 1927, Pennsylva-
nian Foraminifera from Michigan: Contributions from the Cushman Laboratory for Foraminiferal Re-

1928a, Some Foraminifera from the Pennsylvania and Permian of Texas: Contributions from the Cushman Laboratory for Foraminiferal Research, v. 4, no. 2, p. 31–55, 7 pls.

1930, Foraminifera of the Cisco group of Texas (exclusive of the Fusulinidae): University of Texas Bulletin 3013, p. 22–81, 11 pls.

Daln, L. G., 1936, Description of new taxa, in Bykova, N. K., and others, New species and genera of Foraminifera [in Russian]: Vsesoyuzny Nef
tyanoy Nauchno-Isledovatel’skiy Geologorazvedchony In-
itut, Trudy 115, Mikrofauna SSR, no. 9, p. 5–81, 12 pls.

Derville, Henry, 1931, Les marbes du calcaire carboni-
fere en Bas-Boullnais: Strasbourg, Imprimerie O. Boehm (editor), 322 p., 38 pls.

1952, A propos de Calcsphères (rectification): Société Géologique de France Compte Rendu Soma-
taire des Séances, p. 236–237.

tionary trends in Foraminifera: Elsevier, Amsterdam, p. 25–44.

Ehrenberg, C. G., 1854, Mikrogeologie: L. Voss, Leip-
zig, 374 p.

Flügel, E., 1966, Algen aus dem Perm der Karni-
schen Alpen: Carinthia II, v. 25, p. 7–26, 11 pls.

Galloway, J. L., and Harlton, B. H., 1928, Some Penn-
sylvanian Foraminifera of Oklahoma, with special reference to the genus Orobias: Journal of Paleontolo-

Garwood, E. J., 1931, The Tuedian Beds of northern Cumberland and Roxburghshire east of the Liddel

Grayson, R. C., Jr., and Sutherland, P. K., 1977, Conodont evidence for unconformity within Trace Creek Shale Member of Bloyd Formation (Lower Pennsylvanian) in northwestern Arkansas and northeastern Oklahoma, in Sutherland, P. K., and Manger, W. L., editors, Upper Chesterian–Morroan stratigraphy and the Mississippian–Pennsylvanian boundary in northwestern Oklahoma and northwestern Arkansas: Oklahoma Geological Survey Guidebook 18, p. 181–185.

— 1963, Biology, mineralogy, and diagenesis of some typical Late Paleozoic sedentary Foraminifera and algal–foraminiferal colonies: Cushman Foundation for Foraminiferal Research, Special Publication 6, 44 p., 7 pls.

References Cited

Loeblich, A. R., Jr., and Tappan, Helen, 1964, Sarcodeina, chiefly "Thecamoebians" and Foraminifera, part C of Moore, R. C., editor, Treatise on Invertebrate Paleontology, Protista 2: Geological Society of America and University of Kansas Press, 2 v., p. 900.

Orlov, Yu., editor, 1963, Fundamentals of Paleontology (Reference book for Soviet paleontologists and geolo-
References Cited

Owen, D. D., 1858, First report of a geological reconnaissance of the northern counties of Arkansas made during the years 1857 and 1858: Arkansas Geological Survey, 256 p.

———1945, Smaller Foraminifera in the Marble Falls, Smithwick, and lower Llano strata around the Llano Uplift in Texas: University of Texas Publication 4401, p. 209-270, 3 pls.

———1950, Foraminifera from the Middle Carboniferous deposits of the central part of the Russian Platform (exclusive of the family Fusulinidae) [in Russian]: Akademiya Nauk SSSR, Instituta Geologicheskogo Nauk, Trudy, v. 126, no. 47, p. 127-222, 22 pls.

———1921, Palaeontological Data zur Stammesgeschichte der Protozoen: Paläontologische Zeitschrift, v. 3, no. 2, p. 120-188.

—, 1988, Brachiopod zonation of the Lower and Middle Pennsylvanian System in the central United States of America: Compte Rendu, Congres international de Stratigraphie et de Geologie du Carbonifere, 8th, Moscow, 1975, v. 6, p. 71-75.

—, 1948, Studies of American fusulinids: University of Kansas Paleontological Contributions, Protozoa, Article 1, 184 p., 38 pls.

Williamson, W. C., 1880, On the organization of the fossil plants of the Coal-Measures, part 10, including an examination of the supposed Radiolarians of the Carboniferous rocks: Royal Society of London Philosophical Transactions, v. 17, p. 493-539, 8 pls.

References Cited

PLATES
Plate 1

(Sample prefixes are same as those of tables 1 and 2)

Figures 1, 3. —*Tuberitina plana* Reitlinger, 1950, ×200. 1, vertical section (OU9790), sample 120-14D, Kessler Limestone Member of Bloyd Formation. 3, vertical section (OU9791), sample 120-14D, Kessler Limestone Member of Bloyd Formation.

Figures 2, 4. —*Diplosphaerina inaequalis* (Derville, 1931), ×200. 2, vertical section (OU9831), sample 1-6C, Bragg Member of Sausbee Formation. 4, vertical section through three chambers (OU9884), sample 5B-8A, Brewer Bend Limestone Member of Sausbee Formation.

Figures 5, 6. —*Palaonuberculata* spp., ×40. 5, section through proloculus (OU9708), sample 70-13B, Brentwood Limestone Member of Bloyd Formation. 6, oblique section (OU9677), sample 70-7A, Prairie Grove Member of Hale Formation.

Figures 7, 8. —*Pseudoglamospira* spp., ×100. 7, oblique section through proloculus (OU9680), sample 70-8A, Prairie Grove Member of Hale Formation. 8, oblique section through proloculus (OU9694), sample 70-10B-B, Brentwood Limestone Member of Bloyd Formation.

Figures 9, 10. —*Calcitornella* spp. 9, oblique section, ×130 (OU9767), sample 70-24B off, Kessler Limestone Member of Bloyd Formation. 10, oblique section, ×200 (OU9715), sample 70-14B, Brentwood Limestone Member of Bloyd Formation.

Figure 11. —*Trichosphaerites minima* Dain, 1958, ×200, axial section (OU9711), sample 70-14A, Brentwood Limestone Member of Bloyd Formation.

Figure 12. —*Turriscipholium* aff. *T. multiovalis* (Reitlinger, 1949), ×200, axial section (OU9705), sample 70-13B, B, Brentwood Limestone Member of Bloyd Formation.

Figure 13. —*Oertnerella adhersa* Cushman and Waters, 1928, ×200, near horizontal section (OU9711), sample 70-14A, Brentwood Limestone Member of Bloyd Formation.
Plate 2

(Sample prefixes are same as those of tables 1 and 2)

Figures 1–5.—_Turrispirodes multivolutus_ (Reitlinger, 1949), ×200. 1, axial section (OU9727), sample 70-18B, Brentwood Limestone Member of Boyd Formation. 2, axial section (OU9729), sample 70-18C, Brentwood Limestone Member of Boyd Formation. 3, axial section (OU9875), sample 5B-3C, Bragg Member of Sausbee Formation. 4, axial section (OU9727), sample 70-18B, Brentwood Limestone Member of Boyd Formation. 5, sagittal section (OU9726), sample 70-18B, Brentwood Limestone Member of Boyd Formation.

Figures 6, 7.—_Endothyra_ spp., ×100. 6, sagittal section (OU9839), sample 1-6D, Bragg Member of Sausbee Formation. 7, oblique section (OU9690), sample 70-10B-A, Brentwood Limestone Member of Boyd Formation.

Figures 8–10.—_Planoendothyra evoluta_ (Reitlinger, 1950), ×100. 8, axial section (OU9897), sample 5B-12C, Chisum Quarry Member of McCully Formation. 9, sagittal section (OU9776), sample 70-27A, Trace Creek Shale Member of Atoka Formation. 10, axial section (OU9718), sample 70-16A, Brentwood Limestone Member of Boyd Formation.

Figures 12–15.—_Planoendothyra spirilliniformis_ (Brazhnikova and Potievka, 1948), ×100. 12, axial section (OU9818), sample 1-3′′′B, Bragg Member of Sausbee Formation. 13, axial section (OU9789), sample 120-14C, Kessler Limestone Member of Boyd Formation. 14, sagittal section (OU9878), sample 70-8A, Prairie Grove Member of Hale Formation. 15, sagittal section (OU9727), sample 70-18B, Brentwood Limestone Member of Boyd Formation.

Figure 11.—_Planoendothyra_? sp. A, ×100, sagittal section (OU9816), sample 1-3′′′B, Braggs Member of Sausbee Formation.
Plate 3

(Sample prefixes are same as those of tables 1 and 2)

Figures 1, 2.—Planoendothyra? sp. A, ×100. 1, axial section (OU9816), sample 1-3 ‘B, Braggs Member of Sausbee Formation. 2, axial section (OU9815), sample 1-3 ‘B, Braggs Member of Sausbee Formation.

Figures 3-7.—Asteroarchaeidiscus rugosus (Rauzer-Chernousova, 1948), ×200. 3, axial section (OU9683), sample 70-8C, Prairie Grove Member of Hale Formation. 4, axial section (OU9728), sample 70-18B, Brentwood Limestone Member of Floyd Formation. 5, axial section (OU9687), sample 70-10A-A, Prairie Grove Member of Hale Formation. 6, sagittal section (OU9685), sample 70-8C, Prairie Grove Member of Hale Formation. 7, axial section (OU9730), sample 70-18C, Brentwood Limestone Member of Floyd Formation.

Figures 8, 9.—Neoarchaeidiscus spp., ×200. 8, axial section (OU9706), sample 70-13B, Brentwood Limestone Member of Floyd Formation. 9, sagittal section (OU9679), sample 70-8A, Prairie Grove Member of Hale Formation.

Figures 10, 11.—Biseriella spp., ×100. 10, tangential section (OU9694), sample 70-10B-B, Brentwood Limestone Member of Floyd Formation. 11, sagittal section (OU9688), sample 70-10A-B, Prairie Grove Member of Hale Formation.

Figure 12.—Planospirodiscus? sp. A, ×200, axial section (OU9694), sample 70-10B-B, Brentwood Limestone Member of Floyd Formation.

Figure 13.—Tubispirodiscus sp. A, ×200, axial section (OU9806), sample 1-3A, Braggs Member of Sausbee Formation.

Figure 14.—Hemiarachochidiscus sp. A, ×200, axial section (OU9678), sample 70-8A, Prairie Grove Member of Hale Formation.

Figure 15-19.—Monotaxinoides transitorius Brazhnikova and Yartseva, 1966, ×200. 15, axial section (OU9845), sample 1-6E, Braggs Member of Sausbee Formation. 16, axial section (OU9711), sample 70-14A, Brentwood Limestone Member of Floyd Formation. 17, axial section (OU9724), sample 70-18A, Brentwood Limestone Member of Floyd Formation. 18, axial section (OU9724), sample 70-18A, Brentwood Limestone Member of Floyd Formation. 19, axial section (OU9845), sample 1-6E, Braggs Member of Sausbee Formation.
Plate 4

(Sample prefixes are same as those of tables 1 and 2)

Figures 1, 2.—Eostaffella pinguis (Thompson, 1944), x 100. 1, axial section (OU9669), sample 70-6A-L, Prairie Grove Member of Hale Formation. 2, axial section (OU9678), sample 70-8A, Prairie Grove Member of Hale Formation.

Figures 3, 5.—Millerella aff. M. pressa Thompson, 1944, x 100. 3, axial section (OU9709), sample 70-13B, Brentwood Limestone Member of Boyd Formation. 5, axial section (OU9709), sample 70-13B, Brentwood Limestone Member of Boyd Formation.

Figure 4.—Millerella pressa Thompson, 1944, x 100, axial section (OU9709), sample 70-13B, Brentwood Limestone Member of Boyd Formation.

Figures 6, 7.—Eostaffella sp. B, x 100. 6, axial section (OU9789), sample 120-14C, Kessler Limestone Member of Boyd Formation. 7, axial section (OU9789), sample 120-14C, Kessler Limestone Member of Boyd Formation.

Figures 8–12.—Eostaffella sp. A, x 100. 8, axial section (OU9901), sample 5B-15A, Chisum Quarry Member of McCully Formation. 9, axial section (OU9900), sample 5B-15A, Chisum Quarry Member of McCully Formation. 10, axial section (OU9885), sample 5B-8A, Brewer Bend Limestone Member of Sausbee Formation. 11, axial section (OU9898), sample 5B-15A, Chisum Quarry Member of McCully Formation. 12, axial section (OU9899), sample 5B-15A, Chisum Quarry Member of McCully Formation.

Figures 13–17.—Millerella marbiensis Thompson, 1942, x 100. 13, axial section (OU9708), sample 70-13B, Brentwood Limestone Member of Boyd Formation. 14, axial section (OU9707), sample 70-13B, Brentwood Limestone Member of Boyd Formation. 15, axial section (OU9708), sample 70-13B, Brentwood Limestone Member of Boyd Formation. 16, axial section (OU9708), sample 70-13B, Brentwood Limestone Member of Boyd Formation. 17, axial section (OU9709), sample 70-13B, Brentwood Limestone Member of Boyd Formation.
Plate 5

(Sample prefixes are same as those of tables 1 and 2)

Figures 1?, 2–5.—Millerella pressa Thompson, 1944, ×100. 1, sagittal section (OU9704), sample 70-13B, Brentwood Limestone Member of Boyd Formation. 2, axial section (OU9705), sample 70-13B, Brentwood Limestone Member of Boyd Formation. 3, axial section (OU9707), sample 70-13B, Brentwood Limestone Member of Boyd Formation. 4, axial section (OU9709), sample 70-13B, Brentwood Limestone Member of Boyd Formation. 5, axial section (OU9707), sample 70-13B, Brentwood Limestone Member of Boyd Formation.

Figures 6–9.—Millerella cf. M. extensa Marshall, 1969, ×100. 6, axial section (OU9726), sample 70-18B, Brentwood Limestone Member of Boyd Formation. 7, axial section (OU9730), sample 70-18C, Brentwood Limestone Member of Boyd Formation. 8, axial section (OU9731), sample 70-18C, Brentwood Limestone Member of Boyd Formation. 9, axial section (OU9729), sample 70-18C, Brentwood Limestone Member of Boyd Formation.

Figure 10†.—Millerella marilliensis Thompson, 1942, ×100, sagittal section (OU9709), sample 70-13B, Brentwood Limestone Member of Boyd Formation.

Figures 11–13.—Tetragonisus maxima Schellwien, 1898, ×40. 11, near axial section (OU9808), sample 1-3'A, Braggs Member of Sausbee Formation. 12, near axial section (OU9883), sample 5B-8A, Brewer Bend Limestone Member of Sausbee Formation. 13, near axial section (OU9812), sample 1-3'B, Braggs Member of Sausbee Formation.

Figures 14, 15.—Climacoclinea antiqua Brady, 1871, ×25. 14, axial section (OU9843), sample 1-6D, Braggs Member of Sausbee Formation. 15, axial section (OU9847), sample 1-6'E, Braggs Member of Sausbee Formation.

Figure 16.—Tetragonisus angustus Vissarionova, 1948, ×40, near axial section (OU9857), sample 1-7C, Braggs Member of Sausbee Formation.

Figure 17.—Palaeoextantaria? sp., ×40, axial section (OU9816), sample 1-3'B, Braggs Member of Sausbee Formation.
Plate 6

(Sample prefixes are same as those of tables 1 and 2)

Figures 1, 2, 5–9.—*Hemigordius harlonti* Cushman and Waters, 1928, × 200. 1, axial section (OU9722), sample 70-18A, Brentwood Limestone Member of Boyd Formation. 2, axial section (OU9722), sample 70-18A, Brentwood Limestone Member of Boyd Formation. 5, axial section (OU9722), sample 70-18A, Brentwood Limestone Member of Boyd Formation. 6, axial section (OU9722), sample 70-18A, Brentwood Limestone Member of Boyd Formation. 7, axial section (OU9722), sample 70-18A, Brentwood Limestone Member of Boyd Formation. 8, sagittal section (OU9739), sample 70-20D, Dye Shale Member of Boyd Formation. 9, sagittal section (OU9736), sample 70-20C, Dye Shale Member of Boyd Formation.

Figures 3, 4.—*Eolasiodiscus donbassicus* Reitlinger, 1956, × 200. 3, sagittal section (OU9818), sample 1-31/"B. Braggs Member of Sausbee Formation. 4, sagittal section (OU9712), sample 70-14A, Brentwood Limestone Member of Boyd Formation.

Figures 10–15.—*Hemigordius* sp. A, × 200. 10, sagittal section (OU9869), sample 1-20A, Greenleaf Lake Limestone Member of McCully Formation. 11, axial section (OU9867), sample 1-20A, Greenleaf Lake Limestone Member of McCully Formation. 12, axial section (OU9871), sample 1-20A, Greenleaf Lake Limestone Member of McCully Formation. 13, axial section (OU9869), sample 1-20A, Greenleaf Lake Limestone Member of McCully Formation. 14, axial section (OU9871), sample 1-20A, Greenleaf Lake Limestone Member of McCully Formation. 15, axial section (OU9868), sample 1-20A, Greenleaf Lake Limestone Member of McCully Formation. With smaller fragments scattered in matrix (OU9878), sample 5B-6A, Brewer Bend Limestone Member of Sausbee Formation. 17, axial section (OU9862), sample 1-9A, Braggs Member of Sausbee Formation. 18, axial section (OU9880), sample 5B-6C, Brewer Bend Limestone Member of Sausbee Formation.

Figure 19.—*Paraspermastopora* sp. A, × 40, tangential section (OU9749), sample 70-24D, Kessler Limestone Member of Boyd Formation.
Plate 7
(Sample prefixes are same as those of tables 1 and 2)

Figure 1.—Paraspinopora sp. A, ×25, near axial section (OU9743), sample 70-24B, Kessler Limestone Member of Boyd Formation.
Figures 2, 4, 6, 8.—Stachoeides aff. S. tenuis Petryk and Mamet, 1972, ×40. 2, tangential section (OU9756), sample 70-25F, Kessler Limestone Member of Boyd Formation. 4, tangential section (OU9759), sample 70-25A, Kessler Limestone Member of Boyd Formation. 6, tangential section (OU9755), sample 70-25F, Kessler Limestone Member of Boyd Formation. 8, tangential section (OU9757), sample 70-25A, Kessler Limestone Member of Boyd Formation.
Figures 3, 5, 9.—Asphaltina cordillerensis Mamet, 1972, ×40. 3, near transverse section (OU9705), sample 70-13B, Brentwood Limestone Member of Boyd Formation. 5, diagonal section (OU9705), sample 70-13B, Brentwood Limestone Member of Boyd Formation. 9, near transverse section (OU9743), sample 70-24B, Kessler Limestone Member of Boyd Formation.
Figures 7, 10–12.—Nostocites cf. N. vesiculosa Maslov, 1929, ×40. 7, oblique section (OU9727), sample 70-18B, Brentwood Limestone Member of Boyd Formation. 10, horizontal section (OU9724), sample 70-18A, Brentwood Limestone Member of Boyd Formation. 11, vertical section (OU9841), sample 1-6D, Bragg's Member of Sausbee Formation. 12, horizontal section (OU9705), sample 70-13B, Brentwood Limestone Member of Boyd Formation.
Plate 8

(Sample prefixes are same as those of tables 1 and 2)

Figures 1–4. —"Stachioideus" spissa Petryk and Mamet, 1972, ×40. 1, tangential section (OU9828), sample 70-13B, Bragg Member of Sausbee Formation. 2, tangential section (OU9705), sample 70-13B, Brentwood Limestone Member of Floyd Formation. 3, tangential section (OU9704), sample 70-13B, Brentwood Limestone Member of Floyd Formation. 4, tangential section (OU9679), sample 70-8A, Prairie Grove Member of Hale Formation.

Figures 5, 10, 11. —Cuneiphyxus texana Johnson, 1960. 5, horizontal section, ×100 (OU9829), sample 1-6C, Bragg Member of Sausbee Formation. 10, randomly oriented fragments in matrix, ×40 (OU9832), sample 1-6C, Bragg Member of Sausbee Formation. 11, randomly oriented fragments in matrix, ×25 (OU9831), sample 1-6C, Bragg Member of Sausbee Formation.

Figures 6–9. —"E/lugelina" sp. A, ×40. 6, vertical section (OU9751), sample 70-24E, Kessler Limestone Member of Floyd Formation. 7, vertical section (OU9766), sample 70-24A off, Kessler Limestone Member of Floyd Formation. 8, vertical section (OU9816), sample 1-3'B, Bragg Member of Sausbee Formation. 9, vertical section (OU9752), sample 70-24E, Kessler Limestone Member of Floyd Formation.
Plate 9
(Sample prefixes are same as those of table 1 and 2)

Figures 1, 2.—Cuneiphycus aliquantulus Johnson, 1960. 1, horizontal section, ×100 (OU9696), sample 70-12A, Brentwood Limestone Member of Boyd Formation. 2, near horizontal section, ×40 (OU9694), sample 70-10B-B, Brentwood Limestone Member of Boyd Formation.
Figures 3, 4, 6.—Archaeolithophyllum missouriense Johnson, 1956. 3, oblique section (OU9685), sample 70-8C, Prairie Grove Member of Hale Formation. 4, oblique section (OU9687), sample 70-10A-A, Prairie Grove Member of Hale Formation. 6, oblique section (OU9690), sample 70-10B-A, Brentwood Limestone Member of Boyd Formation.
Figures 5, 7, 9.—Archaeolithophyllum sp. A. 5, oblique section, ×40 (OU9746), sample 70-24C, Kessler Limestone Member of Boyd Formation. 7, oblique section, ×40 (OU9662), sample 70-6A-E, Prairie Grove Member of Hale Formation. 9, oblique section, ×100 (OU9672), sample 70-6B-C, Prairie Grove Member of Hale Formation.
Figures 8, 10.—Girvanella minuta Wethered, 1890. 8, random section, ×40 (OU9829), sample 1-6C, Braggs Member of Sausbee Formation. 10, random section, ×200 (OU9842), sample 1-6D, Braggs Member of Sausbee Formation.
Figures 11, 12.—Froinella strigosa (Vachard, 1977). 11, randomly oriented fragments in matrix, ×40 (OU9878), sample 5B-6A, Brewer Bend Limestone Member of Sausbee Formation. 12, randomly oriented fragments in matrix, ×25 (OU9827), sample 1-6B, Braggs Member of Sausbee Formation.
Plate 10
(Sample prefixes are same as those of tables 1 and 2)

Figures 1–9.—Genus A, species A, n. gen., n. sp. 1, oblique section, ×40 (OU9690), sample 70-10B-A, Brentwood Limestone Member of Boyd Formation. 2, near-horizontal section of fragments in matrix, ×40 (OU9909), sample 10568-14 (Hale Mountain), Brentwood Limestone Member of Boyd Formation. 3, near-horizontal section, ×40 (OU9903), sample 10568-11 (Hale Mountain), Brentwood Limestone Member of Boyd Formation. 4, near-horizontal section, ×40 (OU9909), sample 10568-14 (Hale Mountain), Brentwood Limestone Member of Boyd Formation. 5, oblique section, ×40 (OU9907), sample 10568-14 (Hale Mountain), Brentwood Limestone Member of Boyd Formation. 6, near-horizontal sections of fragments in matrix, ×40 (OU9907), sample 10568-14 (Hale Mountain), Brentwood Limestone Member of Boyd Formation. 7, oblique section, ×40 (OU9693), sample 70-10B-B, Brentwood Limestone Member of Boyd Formation. 8, oblique section, ×40 (OU9691), sample 70-10B-A, Brentwood Limestone Member of Boyd Formation. 9, oblique section, ×25 (OU9911), sample 10568-14 (Hale Mountain), Brentwood Limestone Member of Boyd Formation.

Figures 10, 11.—Osagia, ×40. 10, tangential section (OU9749), sample 70-24D, Kessler Limestone Member of Boyd Formation. 11, tangential section (OU9793), sample 120-14E, Kessler Limestone Member of Boyd Formation.

Figures 12, 13.—Calcisphaera laevis Williamson, 1880, ×200. 12, section nearly through center (OU9704), sample 70-13B, Brentwood Limestone Member of Boyd Formation. 13, section nearly through center (OU9797), sample 120-14G, Kessler Limestone Member of Boyd Formation.

Figures 14–17.—Tubisalebra calamiformis Bogush and Brenckle, 1982, ×100. 14, transverse section (OU9912), sample 120-19B, Trace Creek Shale Member of Atoka Formation. 15, transverse section (OU9913), sample 169-27, Trace Creek Shale Member of Atoka Formation. 16, longitudinal section (OU9913), sample 169-27, Trace Creek Shale Member of Atoka Formation. 17, longitudinal section (OU9913), sample 169-27, Trace Creek Shale Member of Atoka Formation.
INDEX
(Boldface numbers indicate main references; parentheses indicate page numbers of text-figures or tables; brackets indicate page numbers of plates)

Adair County, Oklahoma (2), 3, 7, 33
Alabama 10
Alaska 3, 11, 18, 20, 33
algae 1, 2, (2), 3, 27
ammonoids 1, 3, 8
Ammonivertella 10
Amoco Production Co. 9
Aougliaceae 28, 29
Apterinellida 10
Archaeidaeidae 13
Archaeiscus 15
Archaeolithophyllum 3, 26–27
delatostrum 27
lamellosum 27
missouriense (facing 10), 27, [59]
spp. A (facing 10), 27, [59]
Archaephaera 9
Arduin Basin 7
Arizona 18
Arkansas 7, 14, 22, 28
Armstrong, A. K., and Mamet, B. L., cited 3, 8, 11, 12, 15, 17, 19, 20, 27, 28, 30
Asphaltina 30, 31
cordieris (facing 10), 30–31, [55]
Asteroarchaeiscus 13
baschkiricus 14
parus 14
rugosimilus 14
rugosus (facing 10), 13–14, [47]
spp. (facing 10), 13
Atoka Formation 5, 22, 33
Atokan (= Derrygan) rocks 8, 18
Atokan Series 7
Baasmann, J. F., and Brenchle, P. L., cited 8
Baldwin coal 5
Bashkirkian (lower Middle Carboniferous), U.S.S.R. 8, 21
Baxter, J. W., cited 30
Baxter, J. W., and Brenchle, P. L., cited 17
Beressella 24
Betsy Lee Creek 7
Biostatigraphic significance of biota (2), (4), 7–8
Bird Spring Formation 8
Biseriammina 15
Biseriamminae 15
Biseriella (facing 10), 15, [47]
spp. (facing 10)
Bloom Member of Snaky Canyon Formation 8, 26
Bloyd Formation (2), 5, 7, 22, 24
Bogueh, O. I., and Brenchle, P. L., cited 33
Bonem, R. M., cited 7
Bozorgnia, F., cited 13
brachiopods 1, 3
brachiopod zone I, 2
Braggs Member of Sausbee Formation 7, 8, 9, 10, (facing 10), 11, 12, 13, 14, 15, 16, 18, 19, 20, 22, 24, 25, 27, 28, 29, 30, 31, 32
Branneroceras branieri 1, 2, 8
Brasznikova, N. E., and Potievksa, B. L., cited 24
Brasznikova, N. E., and Yartseva, M. V., cited 21
Brenchle, P. L., cited 8, 9
Brenchle, P. L., cited 7, 8, 9, 11, 13, 14, 15, 16, 17, 20, 22, 23, 28
Brenchle, P. L., and others, cited 3, 7, 9
Brethwood Limestone Member of Bloyd Formation 1, 2, 3, 5, 8, 9, 10, (facing 10), 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23, 26, 27, 28, 29, 31, 32
Breuer Bend Limestone Member of Sausbee Formation 1, 2, 7, 8, 9, 10, (facing 10), 14, 16, 19, 23, 24, 27, 29, 30, 31
Brown, R. G., and others, cited 13, 14, 15
Brown, R. G., and Pohl, E. R., cited 8, 9, 21, 22
Brunsia sp. 8, 23, [61]
Calciophyla 30
laveis (facing 10), 30, [61]
pachysphaerica 30
Calcitornella 10
spp. 8, (facing 10)
Calcivertella 8, 10
aderen 8, 10, (facing 10), [43]
Canadian Cordillera 11
Cane Hill Member of Hale Formation 5
Cassity, P. E., and Langenheim, R. L., Jr., cited 3
Chesterian (Late Mississippian) 1, 8, 10, 14, 17, 20, 22
Chesterian Pitkin Limestone 7
Chisum Quarry Member of McCullany Formation 7, 10, (facing 10), 12, 13, 14, 16, 22, 24, 27, 29, 31
Chlorophyta 24
Climacocymina 20
antica (facing 10), 20, [51]
magna 20
moelleri 20
Colorado 3, 20
"Coneiphyx" 26
conodonta 1, 2, 3, 5, 8
"Contortoporida" 26
Cooper, C. L., cited 17
"Cribroporidium" 26
Cribrostomum 20
Cuniciphyx 1, 2, 3, 24–25, (25), 26
aliquantulus 1, 2, 7, (facing 10), 25, 26, [59]
johnsoni 30
texta 1, 2, 7, (facing 10), 25–26, [57]
Cyanophyta 27
Dasyacidae 24
Dasyacidaeae 24
Deckrella 20
Derryan (= Atokan) Bird Spring Formation 19
Diplaphaerina 9
inaequa 9–10, (facing 10), [43]
Donaxella 7, 24
aff. D. lunensis 7, (facing 10), 24, [53]
lutugi 24
Douglass, R. C., cited 17
Dunbar, C. O., cited 8, 17
Dunnella 24
Dye Shale Member of Bloyd Formation 5, 7, 10, (facing 10), 11, 22, 23, 24, 32
Earlandia 30
Early and Late Mississippian 28
early Meramecian 33
"E/flugellia" 29–30, (29)
spp. A (facing 10), 30, [57]
Endothyra 11–12, 13, [45]
Endothyridae 11
Eoaspidiscus 7, 8, 20–21, 22
donbassicus 7, 8, 10, (facing 10), [53]
galinae 21
Eschubertella 1, 2, 3, 8
Eostaffella 1, 2, 7, 8, 15–16, 17
pinguis 1, 2, 7, (facing 10), 16, [49]
spp. A (facing 10), 16, [49]
spp. B (facing 10), 16, [49]
Eostaffellid 15, 16, 17, 18, 19
Eotuberitha 9
Epimastopora 24
kansasensis 24
Epimastoporella 24
Epistachiodoids 28
Ettrain Formation (Atokan/ Derryan) of Canadian Cordillera 22
Evansville Mountain 5, 8
Family undetermined 24, 25, 26, 27, 28
Faschiella (= Shortymophycus) 29
Flagel, Erik, and Flugel-Kahler, E., cited 30
Foliophycus 26
Foraminiferida 10
Foraminiferida 9, 10
foraminifers 1, 2, (2), 3, 7, 27
Poustorma 30
Fremam, Tom, cited 3
Fusulinaeae 17
Galloway, J. J., and Hariton, B. B., cited 3, 10, 23
Gavunoidia 27
Genus A. n. gen. 2, 7, (facing 10), (25), 26, [61]
sp. A. n. sp. 2, 7 (facing 10), 26, [61]
Ginsburg, Robert, and others, cited 30
Girosolella 3, 27, 28
maplewoodensis 27, 28
minuta (facing 10), 27–28, [59]
Staminea 28
Globiocalculina 7, 15
Parva 15
Gordon, Mackenzie, Jr., cited 3
Grayson, R. C., Jr., and Sutherland, P. K., cited 3, 7
Greenleaf Lake Limestone Member of McCully Formation 7, 9, 10, (facing 10), 22, 23, 24, 31, 33
Groves, J. R., and Skipp, Betty, cited 1
Grubs, R. Kent 8
Hale Formation (2), 5, 7
Hale Mountain, Arkansas 3
Harper, Dr. Charles W., Jr. 8
Harrill, Bob 8
Hemiphacaelus 14, 15
sp. A (facing 10), 15, [47]
Hemiporthus 1, 2, 8, 23
discoides 24
Hartoni 1, 2, 7, 8, (facing 10), 23, 24, [53]
liturata 23
simples 23
sp. A 7, (facing 10), 23–24, [53]
Henbest, L. G., cited 3, 5, 27
Henry, T. W., cited 3
Henry, T. W., and Sutherland, P. K., cited 3, 8
Hoffman, Ervin 8
Hueco Mountains, Texas 26
Idaho 3, 8, 23, 26
Idiognathodus 1, 2, 8
sinuosus 1, 2, 8, (facing 10)
Illinois 33
Johnson, J. H., cited 3, 25, 26
Jurassic, Great Britain 28
Kansas 3, 8, 18, 23
Kearny Formation 8, 18
Kentucky 14, 22
Kessler Limestone Member of Bloyd Formation 3, 5, 9, 10, (facing 10), 16, 18, 22, 24, 27, 28, 30, 31, 32
Khvorova, L. V., cited 24
King, W. E., cited 3, 8, 19
Knox, L. W., cited 3, 8
Koskinobigenerina 20
Kotlia, D. A., cited 3, 25
Lane, H. R., cited 3, 8
Lane, Dr. H. Richard 8
Lane, H. R., and others, cited 3, 8
Lane, H. R., and Straka, J. J., II, cited 3, 8
Lasiocidae 20, 21, 22
late Kinderhookian 33
Lehmann, E. P., cited 3
limestone 7
Lipinella 7
Lipinella 7
Lithophyllum 26
Lithostrota 31
localities 5–5
Loeblich, A. A., Jr., and Tappan, Helen, cited 17, 18
Lower Bashkirkian, U.S.S.R. 13
Lower Limestone Group (Lower Carboniferous), Scotland 20
Lower Middle Carboniferous, U.S.S.R. 22
Lower Namurian Ardengest Limestone, France 31
Lower Pennsylvanian 3, (4), 7, 18
McCabe, J. J., II, cited 3
McMurry Formation 20
McCully Formation 7, 22, 23, 24
Mamet, B. L., cited 1, 3, 7, 8, 11, 17, 21, 22, 28, 29
Mamet, Dr. Bernard L. 8
Mamet, B. L., and Armstrong, A. K., cited 3
Mamet, B. L., and others, cited 3
Mamet, B. L., and Roux, A., cited 27, 30, 31, 32
Mamet, B. L., and Rudloff, B., cited 24, 28
Mamet, B. L., and Skipp, B. A., cited 1, 7, 8, 17
Mamet Zone 20 1, 7
Manger, W. L., and Saunders, W. B., cited 3, 5
Manger, Dr. Walter L. 8
Marble Falls Formation 8, 17, 18, 19, 26
Marshall, F. C., cited 3, 8
Marszalek, D. S., cited 30
Maslov, V. P., cited 27, 28
Massa, D., and Vachard, D., cited 30
Medioceris 16
Meramecian 20
Middle Carboniferous, U.S.S.R. 26
Middle Pennsylvanian 18
Middle Pennsylvanian Atokan (=Derryan) Series 5
Millerella 1, 3, 7, 8, 16, 17, 18
aff. M. pressa (facing 10), 18, [49]
cf. M. extensa 7, 8, (facing 10), 19, [51]
marbriensis 1, 7, (facing 10), 17–18, 19, [51]
pungus 3
pressa 1, 7, (facing 10), 18, [49]
sensu stricto 17
ssp. 3
Millerella
advena 3
advena var. amplexa 3
Mississippian–Pennsylvanian
Mississippian–Pennsylvanian boundary
Mississippian Pitkin Limestone
Missouri 33
Missourian (Upper Pennsylvanian)
Exline Limestone, Missouri 27
Mitteldeapnia 3
Monotaxinae 1, 2, 8, 21, 22
gracilis 21
multivolutes 21, 22
priscus 21
transitoris 1, 2, 7, 8, (facing 10), 21–22, [47]
Moore, R. C., and others, cited 5
Moore, W. L., cited 3, 17
Morrow–Atokan/Derryan 1
Morrowan Ely Formation 16
Morrowan (Lower Pennsylvanian) 1, 2, 3, 5, 7, 8, 14, 20, 22
Moscovian (Middle Carboniferous), U.S.S.R. 20
Muskogee County, Oklahoma 2, 3
Neoarcadoecus (facing 10), 13, 14, [47]
spp. 14
Neotuberculina 9
Nevada 3, 8, 14, 18, 19, 20, 22, 23
New Mexico 3, 19
Nikitiuna, A. P., cited 23
Nodine-Zeller, D. E., cited 3
northeastern Oklahoma 1, 2, (2), 3, (4), 5
localities 3–5, (6), 8, 9, 10, (facing 10), 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32
northwestern Arkansas 1, 2, (2), 3, (4), 5, 7
localities 3–5, (6), 8, 9, 10, (facing 10), 11, 12, 13, 14, 15, 16, 18, 19, 20, 22, 25, 26, 27, 29, 30, 31, 33
Nostocites 31, (32)
cf. N. vesiculosa (facing 10), 31–32, [55]
Okahama 3, 7
Otonello 27
Osagia (form genusa) 3, (facing 10), 27, 32–33, [61]
ostracodes 3
Ototnina 3, 27, 32
Ouachita Mountains 7
Owen, D. D., cited 5
Ozawainella 17
Ozawainellinae 17
packstone 7
Palaeoniscus 10, (facing 10), 11
palaeo 11
Palaebactresia 20
Palaeotextura? (app. facing 10), 20, [51]
Palaeotexturiidae 20
Paroepimastopora 24
sp. A (facing 10), 24, [53]
Paramannellinae 16
Pennsylvanian 17, 20, 27
Pennsylvanian Winslow Formation 5
Index

Pentritimal Limestone 5
Permin carbonate-shelf facies 27
Petryk, A. A., and Mamet, B. L., cited 28
Pitkin Limestone 1, 5, 7
Planolinothya 1, 2, 8, 12
evolata 1, 2, 7, 8, (facing 10), 12–13, 45
spirilliformis 1, 2, 7, (facing 10), 12, 13, 45
Planolinothya? sp. A (facing 10), 13, 45
Planolinospicus? sp. A (facing 10), 14, 47
Plantea 24, 25, 26, 27, 28
Plantae? 28
Pliococilinenses? 1, 2, 8
arkanxas 1, 2, 8
Plummer, H. J., cited 3
Pokornillia 31
strigosa 31
Purostromata 27
Prairie Grove Member of Hale Formation 5, 9, 10, (facing 10), 12, 13, 14, 15, 16, 19, 22, 26, 27, 28, 29, 30, 31
pre-Atokan erosion 7
Principia 27
Profusulinella 1, 2, 8
Promilina 31
enigmatica 31
strigosa (facing 10), 31, [59]
Protist 9, 10
Protostoa 9, 10
Pseudoannelidae 10
Pseudoannelidae? 10, 11
Pseudoannelidoscus 23
Pseudoglonospora 10
sp. (facing 10), [43]
Pseudolitaubata 11
Pseudostechoides 28
Pseudostaffella 1, 2, 3, 8
Pseudotaxia 19
Purdue, A. H., cited 5
Quinn, J. H., cited 3
Reitlinger, E. A., cited 8, 24
Rhodophyophyta 24
Rhodophyophyta? 28, 29
rhodophyphyte algae 1
Rich, Mark, cited 3, 8, 9, 10, 18, 20, 22, 28
Rich, Dr. Mark 9
Riding, R., cited 26
Ross, C. A., and Bamber, E. W., cited 8
Ross, C. A., and Sabins, F. F., cited 18
Roth, Robert, and Skinner, John, cited 20
Rothpletz, A., cited 27
Rupp, A. W., cited 30
Salebra 33
Salembridae 33
sandstone 7
Saunders, W. B., and others, cited 5, 8
Sauzee Formation 7, 22, 26
Sawney Hollow 7
shale 7
Shale “A” Member of McCully Formation 7
Shaver, R. H., and Smith, S. G., cited 8
Simonds, F. W., cited 5
Skinner, J. W., and Wilde, G. L., cited 17
Skipp, Betty 9
Skipp, Betty, and others, cited 3
Slade, M. L., cited 3
Schn, I. G., cited 3
Sphaeroporella 30
Spumisalebra 33
Stachela 11
Stachielae 29
Stachoeides 28, 29
aff. S. tenuis (facing 10), 28, [55]
meandriformis 28
“Stachoeides” spissa (facing 10), 28–29, 57
Stewart, W. J., cited 3
stratigraphy (4), 5–7
Sutherland, P. K., and Grayson, R. C., Jr., cited 5
Sutherland, P. K., and Henry, T. W., cited 3, 5, 7
Sutherland, P. K., and Manger, W. L., cited 1, 8
Sutherland, Dr. Patrick K. 8
Tennessee 11
Tetratezidae 19, 20
Tetrataxis (facing 10), 19, 20
acuta 20
angusta (facing 10), 19–20, [51]
gigas 20
maxima (facing 10), 19, 20, [51]
sp. (facing 10), 19
submedia 20
Texas 3, 8, 10, 17, 19, 23, 26
Thompson, M. L., cited 1, 3, 7, 8, 16, 17, 18
Toomey, D. F., cited 23
Tournaision (Lower Carboniferous) 28
Trace Creek 5
Trace Creek Shale Member of Atoka Formation 5, 7, 10, (facing 10), 19, 22, 33
Trepeolopsis 8, 11
grandis 11
minima 8, (facing 10), 11, [43]
Tubertina 9
bulbosa 9
collosa 9
plana 9, [43]
Tubertinidae 9, 10
Tubisalebra 33
calamiformis (facing 10), 33, [61]
contubulata 33
rufoconae 33
Tubispiriscus 14–15
simplissimus 15
sp. A (facing 10), 15, [47]
Turrispioridea 21, 22
aff. T. multivolutus (facing 10), 22–23, [45]
mira 22
multivolutus (facing 10), 22, [45]
Ulrich, E. O., cited 5
Ungdelleaceae? 29, 30, 31, 32, 33
University of Oklahoma, The 3
University of Oklahoma Invertebrate Paleontology Repository 9
unnamed genus 3
Upper Carboniferous of Carnic Alps 19
upper Chesterian 1
upper Lower Carboniferous Beshovo Limestone, U.S.S.R. 11
upper Lower Carboniferous Iagovkin Formation, central Kazakh- stan, U.S.S.R. 14
upper Lower Carboniferous of Donets Basin, U.S.S.R. 22
upper Middle Carboniferous (lower Moscovian), U.S.S.R. 9
Upper Mississippian 7, 27
Upper Mississippian Chesterian 5
upper Morrowan 23
Upper Pennsylvanian Graham Formation of Cisco Group 10, 23
Upper Serpukhovian, U.S.S.R. 8
Utah 3
Viséan Etherington Formation, Alberta 29
Viséan (Lower Carboniferous) Mount Head Formation, Albert a 28, 29, 31
Viséan (Lower Carboniferous) rocks, Great Britain 32
Volvocestaria mississippiana 11
Vostokotella 11
Wagner, R. H., and others, cited 8
Washington County, Arkansas (2), 3, 5
Webber’s Falls Lock and Dam 7
Wetheredella 30
Wood, Alan, cited 27, 28
Woolsey Member of Bloyd Formation 5, 7
Wray, J. L., cited 25, 26, 27, 30
Wyoming 3
Young County, Texas 10
Zaninetti, L., and others, cited 23
Zeller, D. E. N., cited 17
“Zellerina” 17
Type faces: Text in 9- and 8-pt. Century Schoolbook, with 1-pt. leading
Heads in 10- and 9-pt. Century Schoolbook
Figure captions in 8-pt. Helvetica, with 1-pt. leading
Plate descriptions in 8-pt. Century Schoolbook
Table headings in 10-pt. Century Schoolbook, caps and small caps
Running heads in 8-pt. Century Schoolbook bold

Presswork: Miller 38-in. 2-color; covers on 23 by 29 Harris

Binding: Smyth sewn

Paper: Text on 70-lb. Patina

Covers: Hardbound on Gane 8159LV blue cloth on 160-pt. binder's board
Softbound on 65-lb. Hammermill gray, antique finish