

Circular 87

ISSN 0078-4397

GEOHYDROLOGY OF THE VAMOOSA-ADA AQUIFER EAST-CENTRAL OKLAHOMA

JOSEPH J. D'LUGOSZ AND ROGER G. McCLAFLIN

With a section on

CHEMICAL QUALITY OF WATER

MELVIN V. MARCHER

Prepared by the United States Geological Survey in cooperation with the Oklahoma Geological Survey

This publication, printed by Edwards Brothers, Inc., Ann Arbor, Michigan, is issued by the Oklahoma Geological Survey as authorized by Title 70, Oklahoma Statutes 1981, Section 3310, and Title 74, Oklahoma Statutes, 1981, Sections 231–238. 1,000 copies have been prepared for distribution at a cost of \$9,886 to the taxpayers of the State of Oklahoma. Copies have been deposited with the Publications Clearinghouse of the Oklahoma Department of Libraries.

OKLAHOMA GEOLOGICAL SURVEY

CHARLES J. MANKIN, Director KENNETH S. JOHNSON, Associate Director

SURVEY STAFF

ROBERT H. ARNDT, Economic Geologist Betty D. Bellis, Word Processor Operator MITZI G. BLACKMON, Clerk-Typist HELEN D. BROWN, Assistant to Director MARGARET R. BURCHFIELD, Petroleum Geologist RANDAL D. BURNESON, Cartographic Technician I JOCK A. CAMPBELL, Petroleum Geologist BRIAN J. CARDOTT, Organic Petrologist KEITH A. CATTO, JR., Chemist JAMES R. CHAPLIN, Geologist MARGARETT K. CIVIS, Chief Clerk CHRISTIE L. COOPER, Editorial Assistant ELDON R. Cox, Manager, Core and Sample Library CHARLES DYER III, Drilling Technician Walter C. Esry, Core and Sample Library AssistantROBERT O. FAY, Geologist SAMUEL A. FRIEDMAN, Senior Coal Geologist T. WAYNE FURR, Manager of Cartography BARBARA J. GARRETT, Record Clerk L. JOY HAMPTON, Petroleum Geologist KIMBERLY D. HEIRICH, Publications Clerk LEROY A. HEMISH, Coal Geologist PAULA A. HEWITT, Supervisor, Copy Center

Shirley Jackson, Research Specialist I JARAND W. JANUS, Laboratory Assistant James Irvin Jones, Facilities Maintenance Helper JAMES E. LAWSON, JR., Chief Geophysicist KENNETH V. LUZA, Engineering Geologist DAVID O. PENNINGTON, Geological Technician ROBERT M. POWELL, Chemist MASSOUD SAFAVI, Cartographic Technician II JUDY A. SCHMIDT, Secretary I CONNIE G. SMITH, Associate Editor LARRY N. STOUT, Geologist/Editor MICHELLE J. SUMMERS, Geological Data CoordinatorNEIL H. SUNESON, Stratigrapher DANNY L. SWINK, Drilling Technician MICHAEL C. TURMAN, Offset Duplicating Machine Operator LAURIE A. WARREN, Research Assistant I RICHARD L. WATKINS, Electronics Technician JANE WEBER, Organic Chemist STEPHEN J. WEBER, Chief Chemist GWEN C. WILLIAMSON, Office Manager ROBERT D. WOOLLEY, JR., Cartographic Technician II

•			
		•	

CONTENTS

• • • • • • • • • • • • • • • • • • • •	Page
Summary of information required to meet Oklahoma ground-water law	vi
Abstract	I
Introduction	1
Purpose and scope	1
Acknowledgments. Conversion factors	2
Explanation of site-location method	
Previous studies	2
Location and geographic setting	2
Climate	2
Definition of Vamoosa-Ada aquifer	4
Geologic framework of Vamoosa-Ada aquifer	4
Regional and local structure	4
Environments of deposition	
Geologic control of ground water	
Ground water	
Occurrence and movement	
Recharge	19
Potable water in storage	19
Discharge	20
General hydrologic budget	23
Chemical quality of water	
Base of potable water Water types	
Variations in chemical quality	
Trace elements	37
Outlook for the future	37
Selected references	38
Index	40
ILLUSTRATIONS	
Figures	
1. Location of study area	3
2 Water-level hydrographs for wells in the Vamoosa-Ada aquifer and monthly	
precipitation at nearby stations	21
3. Specific conductance of water measured in Wewoka Creek basin, August 1975.	36
—	
Plates	
1. Geologic map and geohydrologic sections	. pocket
2 Man showing aggregate sandstone thickness, transmissivity, and specific	-
capacities of wells	. pocket
3. Geohydrologic maps	pocket
TABLES	
1. Results of aquifer tests	6
2. Records of wells in the Vamoosa-Ada aquifer	
3. Municipal water use during 1975	22 26
4. Chemical analyses of water from wells in the Vamoosa-Ada aquifer 5. Specific-conductance, discharge, and bromide data for streams draining the	20
5. Specific-conductance, discharge, and bromide data for streams draining the Vamoosa–Ada aquifer	29
6 Concentrations of selected chemical constituents in relation to well depth	
7. Trace elements, in milligrams per liter, present in municipal water supplies	

SUMMARY OF INFORMATION REQUIRED TO MEET OKLAHOMA GROUND-WATER LAW

This section of the report is included as agreed upon by the U.S. Geological Survey, the Oklahoma Geological Survey, and the Oklahoma Water Resources Board. The information is provided in order for the Oklahoma Water Resources Board to meet the requirements of Oklahoma State Law (82 Oklahoma Statutes Supp. 1973, paragraph 1020.1 et seq.) which became effective July 1, 1973. This law requires that the Oklahoma Water Resources Board make a determination of the maximum annual yield of each ground-water basin in the State for a minimum 20-year-life based on the following:

- The total land area overlying the basin or subbasin.
- 2. The amount of water in storage in the basin or subbasin.
- The rate of natural recharge to the basin or subbasin and total discharge from the basin or subbasin.
- 4. Transmissivity of the basin or subbasin.
- 5. The possibility of pollution of the basin or subbasin from natural sources.

According to determinations made by the Oklahoma Water Resources Board, the total amount of ground water established under prior rights¹ is 11,946 acre-ft per year and the total amount of land covered by prior rights is 8,503 acres.

Based on this study, the following informa-

tion is provided to assist the Oklahoma Water Resources Board to meet the requirements of Oklahoma ground-water law:

- 1. The total land area overlying the basin is 1,484,000 acres. "Ground-water basin" by Oklahoma law means a distinct underground body of water overlain by contiguous land and having substantially the same geologic and hydrologic characteristics and yield capacities. As used in this report, "basin" refers to that part of the Vamoosa-Ada aquifer lying between the outcrop of the base of the aquifer in the east and the approximate location in the subsurface, projected to the surface, where the aquifer contains water having a dissolved solids concentration of 1,500 mg/L on the west.
- 2. The amount of water in storage in the "basin" and available for use is estimated at 36 million acre-ft as of July 1, 1973.
- 3. The rate of natural recharge to the "basin" is estimated at 93,000 acre-ft per year. Total discharge from the basin is estimated to be about equal to recharge. If the hydrologic system remained completely static except for recharge and if all the water available from storage could be removed over the 20-year life of the "basin," the amount that could be pumped is estimated at 1.2 acre-ft per acre per year.
- The transmissivity of the "basin" ranged from 70 to 490 ft²/day in July 1, 1973.
- 5. The major source of natural pollution to the "basin" is brines lying below the zone of fresh water being discharged to the aquifer or on the land surface as a result of petroleum development activities. In addition, excessive local pumping may lower the head in the aquifer sufficiently to induce upward migration of the underlying brine.

¹ Prior rights, as defined by the Oklahoma Water Resources Board, is the right to use ground water established by compliance with the laws in effect prior to July 1, 1973, the effective date of the Ground Water Act.

GEOHYDROLOGY OF THE VAMOOSA-ADA AQUIFER EAST-CENTRAL OKLAHOMA

JOSEPH J. D'LUGOSZ¹ AND ROGER G. McCLAFLIN²

Abstract—The Vamoosa-Ada aquifer, which underlies an area of about 2,320 mi², consists principally of the Vamoosa Formation and the overlying Ada Group of Pennsylvanian age. Rocks comprising the aquifer were deposited in a nearshore environment ranging from marine on the west to nonmarine on the east. Because of changes in depositional environments with time and from place to place, the aquifer is a complex sequence of fine- to very fine-grained sandstone, siltstone, shale, and conglomerate, with interbedded very thin limestone. The aggregate thickness of water-bearing sandstones is greatest south of the Cimarron River, where it reaches a maximum of 550 ft in the vicinity of Seminole. North of the Cimarron River, the average aggregate thickness of the sandstones is about 100 ft, but locally it may be as much as 200 ft.

Transmissivity values derived from seven aquifer tests made for this study range from 70 to 490 ft² per day; values decrease from south to north with decreasing sandstone thickness. Hydraulic-conductivity values range from 2 to 4 ft per day. Storage coefficients for the confined part of the aquifer, as determined from four aquifer tests made during 1944, have an average value of 0.0002. The average storage coefficient for the unconfined part of the aquifer is estimated at 0.12, based on an analysis of geophysical logs and grain-size data. The specific capacity of wells tested is generally less than 1 gallon per minute per foot of drawdown.

An approximate hydrologic budget for the aquifer for 1975 gives values, in acre-feet per year, of 93,000 for recharge, 233,000 for runoff, and 2,003,000 for evapotranspiration. The total of these values is almost equal to the average annual precipitation of 2,330,000 acre-ft per year. The estimated amount of water containing a maximum of 1,500 milligrams per liter of dissolved solids stored in the aquifer is estimated at 60 million acre-ft. Of this amount, an estimated 36 million acre-ft is available for use.

The quality of water in the Vamoosa-Ada aquifer generally is suitable for municipal, domestic, and stock use. Of 55 water samples analyzed in the laboratory, about 75 percent were of the sodium bicarbonate or sodium calcium bicarbonate type; the remainder were of the sodium sulfate, calcium sulfate, sodium chloride, or indeterminate types. Laboratory and on-site chemical-quality data indicate that mineralization of both ground and surface waters is greater than normal in some areas. Water samples from 7 wells and 12 stream sites had concentrations of bromide exceeding 1 milligram per liter; the only known source of bromide in the area is brine associated with petroleum production.

INTRODUCTION

Purpose and Scope

Urbanization, economic growth, and improved standards of living in rural areas of east-central Oklahoma require ever-increasing amounts of water; a potential source of this water is the Vamoosa—Ada aquifer. Information on the availability and usability of water from the aquifer is needed to provide planners and individual water users with adequate data for orderly development and wise use of this vital resource. Recognizing the need for such information, the

Oklahoma Geological Survey requested the U.S. Geological Survey to make an appraisal of the Vamoosa-Ada aquifer; this report presents the results of that appraisal.

The purpose of this report is to describe the geologic framework and hydrologic characteristics of the Vamoosa-Ada aquifer and to provide a general evaluation of the chemical quality of water in the aquifer. Information used to prepare the report was obtained from on-site and laboratory studies and from published and unpublished records of Federal, State, and local agencies

Acknowledgments

The authors express their gratitude to the organizations, city officials, and individuals who contributed data or assistance during the project.

¹ Hydrologist, U.S. Geological Survey, Water Resources Division, Oklahoma City.

² Hydrologic Technician, U.S. Geological Survey, Water Resources Division, Oklahoma City.

Introduction

City officials of Seminole, Bowlegs, Prague, Stroud, Cushing, and Drumright permitted aquifer tests of city wells. Schlumberger, Ltd., provided assistance in interpretation of geophysical logs.

2

Conversion Factors

U.S. customary units used in this report may be converted to SI (International System of Units) metric units by the following conversion factors:

Inch-pound unit in. (inch)	Multiply by 25.40	Metric unit obtained mm (millimeter)
ft (foot)	0.3048	m (meter)
	1.609	km (kilometer)
mi (mile)		
ft/mi (foot per mile)	0.1894	m/km (meter per kilometer)
acre-ft (acre-foot)	1.233×10^{-3}	hm ³ (cubic hectometer)
ft ³ /s (cubic foot per second)	0.02832	m ³ /s (cubic meter per second)
gal/min (gallon per minute)	0.06309	L/s (liter per second)
(gal/min)/ft (gallon per minute per foot)	0.207	(L/s)/m (liter per second per meter)
acre	4047.	m ² (square meter)
ft ² /d (foot squared per day)	0.0929	m ² /d (square meter per day)
	0.3048	m/d (meter per day)
ft/d (foot per day) acre-ft/mi ² (acre-foot per square mile)	4.76×10^{-4}	hm ³ /km ² (cubic hectometer per square kilometer)
gal/d (gallon per day)	3.785×10^{-3}	m ³ /d (cubic meter per day)

Explanation of Site-Location Method

The standard method of giving location by fractional section, section, township, and range is replaced by the method illustrated in the diagram below. The location of the site indicated by the dot normally would be described as the

NW¹/₄SE¹/₄SW¹/₄ sec. 6, T. 15 N., R. 8 E. The method used in this report reverses this order by giving township, range, section, and indicated quarter subdivisions of the section by letters. By this method the location of the site is given as 15N-08E-06CDB 1. The final digit (1) is the sequential number of a site within the smallest fractional subdivision.

Previous Studies

Limited geohydrologic data pertaining to the Vamoosa—Ada aquifer are given in reports by Hart (1974), Bingham and Moore (1975), and Bingham and Bergman (1980). The geology of stratigraphic units that compose the Vamoosa—Ada aquifer is described in reports by Greig (1950), Oakes (1959), Ries (1954), and Tanner (1956a and 1956b). Descriptions of the lithology and sedimentary structures of certain sandstone units within the Vamoosa Formation are presented in reports by Terrell (1972) and Shelton and Rowland (1974).

Location and Geographic Setting

The Vamoosa-Ada aquifer extends from the Canadian River to the Kansas State line and underlies an area of about 2,320 mi² in east-central Oklahoma (fig. 1). The eastern boundary of the aquifer is the contact of the Vamoosa Formation with the underlying formations. The western boundary is approximately the location in the subsurface, projected to the surface, where the aquifer contains water having a dissolved-solids concentration of about 1,500 mg/L (milligrams per liter), the approximate limit of water potability (Kelly, 1962).

The area is a southeasterly sloping, gently rolling plain interrupted at intervals of several miles by eastward-facing escarpments. Altitudes of the land surface range from about 725 ft in Seminole County to slightly more than 1,100 ft in northern Osage County.

Climate

The climate of the area is continental, subhumid. The difference between the average summer and the average winter temperatures is about 40°F. The prevailing winds generally are from the north from December to February and from the south the rest of the year. Average annual precipitation ranges from 36 to 40 in. in the southern part of the area to 34 to 36 in. in the northern part. Average runoff ranges from 4 to 6 in. per year. The growing season lasts about 200 days

Introduction 3

Figure 1. Location of study area.

from early April to late October, and the annual precipitation generally is adequate for the types of crops grown. Only about 200 acres of land was irrigated during 1976.

Definition of Vamoosa-Ada Aquifer

The Vamoosa-Ada aguifer, as defined herein, consists principally of the Vamoosa Formation and the overlying Ada Group1 (see geologic map, pl. 1). In extreme southern Seminole County, some sandstone beds of the Vanoss Group,1 which overlies the Ada Group, are included in the aquifer; these beds make up less than 10 percent of the total sandstone thickness in this part of the area. Near the eastern edge of the Vamoosa outcrop, some sandstone beds of the underlying Hilltop, Barnsdall, or Tallant Formation, whichever is present, may be in hydrologic connection with overlying units of the Vamoosa Formation and may be the source of water to a few wells. However, these sandstones are insignificant in comparison with the total body of the aguifer. All the units are Pennsylvanian in age.

GEOLOGIC FRAMEWORK OF VAMOOSA-ADA AQUIFER

The occurrence and movement of water in the Vamoosa-Ada aquifer is controlled by regional and local geologic structure, lateral and vertical distribution of sandstone and shale units, and physical characteristics of the rocks. The physical characteristics of the rocks, which also control the hydraulic properties of the aquifer, are directly related to source areas and environments of deposition.

Regional and Local Structure

Structurally, the Vamoosa-Ada aquifer lies on a westward-sloping homocline that dips 30 to 90 ft/mi. Superimposed on the homocline are en echelon faults in belts that extend from southern Seminole County across Okfuskee, Creek, and eastern Pawnee Counties, and into northern Osage County (geologic map, pl. 1). The faults are mainly normal and occur in parallel bands that trend northwest or northeast. Few faults exceed 3 mi in length, and most average about 2 mi. Vertical displacement across the faults is rarely more than 100 ft and is usually about 50

ft. Subsurface evidence shows that the amount of displacement diminishes with depth and that the faults probably do not extend below rocks of Pennsylvanian age (Levorsen, 1929, p. 338).

Environments of Deposition

The Vamoosa-Ada aguifer consists of a complex sequence of fine- to very fine-grained sandstone, siltstone, shale, and conglomerate. These are interbedded with very thin limestones. The water-yielding capabilities of the aquifer are generally controlled by lateral and vertical distribution of the sandstone beds and their physical characteristics. These in turn are related to the environments of deposition. Most of the rocks were deposited in a nearshore environment ranging from marine on the west to nonmarine on the east. Several subenvironments can be differentiated on the basis of geometry, distribution, and lithology of the sandstone units (Terrell, 1972). The more significant subenvironments, hydrologically, include: (1) stream channel and near channel, (2) distributary channel, (3) deltaic, and (4) delta fringe and shallow marine.

The lateral distribution and aggregate thickness of the sandstone units are shown on plate 2. These maps show that major sequences of sandstone are principally confined to the southern half of the area. Areas where sandstone is greater than 25 ft thick probably represent sand-rich deltaic sequences. Areas where sandstone is less than 25 ft thick probably represent delta-fringe and shallow-marine deposits. The location of the deltaic deposits, primarily in the southern part of the area, as well as the trend of major sequences of sandstone, which is from north to south and from southeast to northwest, indicates that the principal sources of sediment were the Arbuckle and Ouachita Uplifts, although minor amounts of sediment may have been contributed by the Ozark Uplift.

The vertical distribution of the sandstone units is illustrated by the geohydrologic sections (pl. 1); the locations of the sections are shown on the geologic map on plate 1. Only those sandstone units that can be correlated with some degree of confidence from one well to another are included. These sections show that individual sandstone units thicken and thin or even pinch out over short distances, thus reflecting the variable and shifting nature of the depositional environments.

Individual sandstone units are either thin bedded or lenticular. Although both types are fine grained and well sorted, thin-bedded units generally are finer grained and less well sorted.

Thin-bedded sandstones are 1 to 5 ft thick and are laterally extensive. Maximum grain di-

¹ The stratigraphic nomenclature and age determinations used in this report are those accepted by the Oklahoma Geological Survey and do not necessarily agree with those of the U.S. Geological Survey.

ameters are 0.167 to 0.30 mm, median diameters are 0.084 to 0.170 mm, and mean diameters are 0.095 to 0.171 mm (Terrell, 1972). These sands probably were deposited in the delta-fringe-shallow-marine environment.

Lenticular sandstones are 5 to 30 ft thick and are 10 to 600 ft wide. These units are characterized by an overall upward decrease in grain size. Maximum grain diameters are 0.170 to 0.405 mm, median diameters are 0.091 to 0.240 mm, and mean diameters are 0.101 to 0.225 mm (Terrell, 1972). The lenticular sandstones have well-defined upper, lower, and lateral contacts. These sandstones probably represent distributary, channel, or near-channel deposits.

Geologic Control of Ground Water

Of the several geologic conditions that control the occurrence and movement of ground water in the Vamoosa–Ada aquifer, variations in sandstone thickness are the most significant. For example, where the sandstone sequence is thick, the zone of potable water is thick, and vice versa, as shown by comparing the maps on plate 2 with map B on plate 3. Comparison of the maps on plate 2 with map C on plate 3 shows that where the sandstone grades into less-permeable shale and siltstone toward the west, the base of potable water rises in altitude.

Studies by Terrell (1972) show that lenticular sandstones have a preferred direction of grain orientation. Measurements of these sandstones show that maximum horizontal permeability is parallel to the preferred direction of grain orientation and that horizontal permeability is 18 percent greater than vertical permeability. Thinbedded sandstones do not display this preferred direction of permeability.

The en echelon faults mentioned earlier in this report may be hydrologically significant in that either they retard ground-water flow or provide open conduits for rapid recharge to the aquifer. This depends on the amount of fracturing of near-surface rocks and the amount of brecciation and shearing along the fault zones.

Regional movement of ground water is presumed to be toward the west in accordance with the regional dip of the aquifer. However, waterlevel data to substantiate this assumption are not available.

Hydrologic Properties of the Aquifer

The hydraulic properties of the Vamoosa-Ada aquifer are largely controlled by the lateral and vertical distribution of sandstone and shale units

and the physical characteristics of these rocks.

In order to determine some of the hydraulic properties, recovery tests were made on seven wells completed in the confined part of the aquifer; only those wells having adequate construction data were used. The results of the tests were analyzed using the Theis recovery equation. They are summarized in table 1. Transmissivity values derived from these tests range from 70 to 490 ft2/d. An overall decrease in transmissivity occurs from south to north corresponding with decreasing saturated thickness and sand thickness. Hydraulic-conductivity values range from 2 to 4 ft/d and are consistent for all the tests. A value of 3 ft/d for hydraulic conductivity was used to compute values of theoretical transmissivity for both the unconfined and confined parts of the aquifer (pl. 2, maps A and B).

Unpublished storage coefficients determined from four aquifer tests made during 1944 by the U.S. Geological Survey ranged from 0.0001 to 0.0003. A value of 0.0002 probably is close to the average that can be applied to the confined part of the aquifer. Specific yield, which is virtually the same as the storage coefficient for the unconfined part of the aquifer, was estimated by determining porosity from neutron logs and comparing the percentage difference between porosity and specific yield for various materials as given by Johnson (1967). For the Vamoosa-Ada aquifer, specific yield is estimated to be 60 percent of porosity (20 percent), or 0.12.

Specific-capacity measurements in the Vamoosa-Ada aquifer are usually less than 1 (gal/min)/ft, because gun-perforated casings rather than screens are used in most wells. The use of screens undoubtedly would increase well efficiency. For example, in a similar aquifer in central Oklahoma, screened wells had an average specific capacity of 2.5 (gal/min)/ft, whereas gunperforated wells had an average specific capacity of 1.2 (gal/min)/ft (Marsh, 1966).

The range of specific capacities shown in the maps on plate 2 were determined by methods given in Bentall (1963) and are entirely theoretical. Theis' equation (Bentall, 1963, p. 332) was applied to the unconfined zone, and Brown's equation (Bentall, 1963, p. 336) was applied to the confined zone.

GROUND WATER

In order to evaluate the hydrology of the Vamoosa-Ada aquifer, records of about 380 wells (table 2), including water-level measurements, were collected on site or taken from the files of the U.S. Geological Survey. In addition, periodic

	•	Groun	d Wa	ter				
	Hydraulic conductivity (feet per day)	2	ĸ	ဂ	2	7	1	1
	Transmissivity (feet squared per day)	7690	130	190	280	170	7.0	70
STS	Average discharge (gallons per minute)	290	06	40	208	110	09	85
AQUIFER TES	Drawdown (feet)	160	186	57	155	161	138	172
TABLE 1.—RESULTS OF AQUIFER TESTS	Static water level below land surface (feet)	259	172	125	168	219	206	214
TABLE	Perforated interval (feet)	275	45	59	200	40	1	
	Well depth (feet)	816	420	408	269	425	538	275
	Length of test (days)	2.2	3	2.5	2	2	н	H
	Well location	09N-06E-20ABD-1	12N-06E-27BCB-1	15N-06E-28DBD-1	17N-05E-03ACB-1	17N-07E-08CBD-1	18N-06E-36DAD-1	18N-06E-36DAA-1

[Water use: C, commercial; H, domestic; I, irrigation; N, industrial; P, public supply; S, stock supply; U, unused. Units of measurement: ft (feet); in. (inches); gal/min (gallons per minute); µmho/cm (micromhos Table 2.—Records of Wells in the Vamoosa-Ada Aquifer

	Specific Chemical conductance analyses in (µmho/cm) table 4		1 0	360	896 X		!			> 111			177	3 4	-		920		;	1		365 X	£ ! !	 	1 6 6 7	9299	1	426 X	1	7 4 4 C	
	Altitude (ft)		895	945	910	810	800	0	990	820	5//	760	760	840	902	910	890	845	865	000		820	810	817	087	950	800	820	840	845 545	000
	Well yield (gal/min)		 	!	! !	! ! ! !	ļ		 	 	!	!	1	1	! ! •	!!!	ļ			l i i	! !	-	1 1	!	!	1 6	370	35		1	! !
per centimeter at 25°C)]	Date measured	CREEK COUNTY	10-74	10-74	9-70	4-/T	10-74		10-74	04-70	9-10	10-74	10-74	10-70	10-74	10-74	10-74	1017	TO-14	TO-/4	TO-/4	10-74	11-70	11-70	10-74	10-74	1 - 1	ļ	10-74	10-74	! !
per centir	Depth to water (ft)	CREEK	57	146	68	113	37		43	56	20	12	13	24	32	77	. 6	0 6	5 P	/8	58	65	35	20	36	108	က		25	72	206
	Use of water		Ω	н	D	н:) #		æ	Ħ	H	Ω	H	n	F	ם כ	c ;	I :	O :	D :	Þ	н	н	Ω	Ω	S	I	þ	H	н	Z
	Casing diameter (in.)		9	œ	9	;	o !		ł	1	1	9	ļ	9	5	07	٥,	۰ ب	9	∞ '	9	9	1	9	9	9	8		! ⁹	10	10
5	Well depth (ft)		130	168	104	153	46	1	4.5	35	55	13	24	99		747	80 T	142	35	122	74	149	56	58	95	216	162		185	107	650
	Location		14N-07E-05 CDC				14N-07E-11 ABC		14N-07E-16 CAA												15N-07E-25 AAD	15N-07E-25 CCC							15N-08E-06 CDB		16N-07E-09 BA-

Table 2.—Continued

Location	Well depth (ft)	Casing diameter (in.)	Use of water	Depth to water (ft)	Date measured	Well yield (gal/min)	Altitude (ft)	Specific conductance (µmho/cm)	Chemical analyses in table 4
16N-07E-11 DCC 16N-07E-14 CAC	45 30	७७	нн	CREEK COUNT 28 21	CREEK COUNTYContinued 28 2-75 21 11-70		900	830	
16N-07E-14 DBC 16N-07E-18 ABB 16N-07E-21 ADA 16N-07E-33 DDA 16N-07E-35 AB- 16N-08E-09 DDA	40 29 117 99 650 48	9 6 8 8	*** 1 4 5	26	11-70 2-75 9-70 11-70	0	860 915 885 880 88-	1390 110 536	××
16N-08E-22 CCD 17N-07E-06 ACB 17N-07E-08 CBD 17N-07E-08 CCA 17N-07E-25 ADD 17N-07E-30 DAD	92 260 425 487 130 142	8 1 9	D M M M M C	65 85 219 135 40 60	10-70 11-75 4-71 1-75	35	850 930 920 1010	 908 644 244	××
17N-08E-02 CDD 17N-08E-08 ACC 17N-08E-09 AAA 17N-08E-09 BBA 17N-08E-11 DCD 17N-08E-16 ADA	42 136 41 97 53	8 9 9		21 25 34 27 22	12-74 12-74 10-74 10-70		885 920 950 910 820 850	382 382 470 470 535	×
17N-08E-18 AAA 17N-08E-19 BBC 17N-08E-20 AAC 17N-08E-23 BBB 17N-08E-29 DAD 17N-08E-30 CBB	164 60 157 59 130 58	9 9		44 30 119 20 33 41	10-74 10-74 10-74 10-74 10-74 11-69		930 1010 945 900 925	555 175 550 530 930	
17N-08E-33 BAB 17N-08E-35 BDA 18N-06E-36 DAD 18N-06E-36 DAA 18N-06E-36 DDA 18N-07E-13 AAD	60 121 538 362 490 77	9 1 1 1	ржаааі	12 24 206 206 100 64	1-75 1-75 8-75 10-75 8-71	30	910 960 940 960 950	51 654 654 654 746 218	×× ××

9

×× ×	×	× × ×	×
1300 733 648 190 520	376	126 1530 750 350 208 	221 521 760 600 690 650 650 650 650 650 650 650 650 650
940 870 830 1000 935 990	800 905 890 880 890	925 810 860 823 800 805 900	1005 890 850 780 780 1010 1005 860 860 860 825 910 910
			11 11 16 11 11 11 11 11 11
4-75 4-75 2-75	11-72 12-74 1-75 1-75 1-75	1-75 2-73 4-75 2-73 4-75 4-75	LINCOLN COUNTY 64 10-75 72 10-74 17 1-75 1-75 17 1-75 172 5-75 172 5-75 172 1-75 174 10-74 10-74 10-75 112 112 112 113
276 265 265 45	50 73 14 35 8	22 60 105 35 30 29	LINCOLL 64 72 17 21 21 21 27 17 17 17 17 17 17 17 17 17 1
дОхннн	нрн н)))) HERRED	ржррам нарар рінінн
1 10 199	\o \o v	10 000004	80 v 088 00 0 0
600 124 443 230 70	120 94 98 50	194 180 120 180 67 125 125	97 173 71 71 356 356 367 420 412 412 42 42 46 42 137 100 100
18N-07E-16 BAD 18N-07E-20 A 18N-07E-28 CBC 18N-07E-35 DDA 18N-08E-09 DDD 18N-08E-14 DAD	18N-08E-18 BCC 18N-08E-23 BBD 18N-08E-26 CDC 18N-08E-32 CCC		12N-05E-35 DDC 12N-06E-01 AAA 12N-06E-01 BAB 12N-06E-10 BCC 12N-06E-20 DDB 12N-06E-20 DDC 12N-06E-20 DAC 12N-06E-20 BCC 12N-06E-20 BCC 12N-06E-20 BCD 13N-06E-29 BCD 13N-06E-18 DCD 13N-06E-18 DCD 13N-06E-18 DCD 13N-06E-25 BCC 13N-06E-25 BCC 13N-06E-25 BCC 13N-06E-25 BCC 13N-06E-29 AAA 13N-06E-29 AAA 13N-06E-29 AAA

Table 2.—Continued

Location	Well depth (f.t)	Casing diameter (in.)	Use of water	Depth to water (ft)	Date	Well yield (gal/min)	Altitude (ft)	Specific conductance (µmho/cm)	Chemical analyses in table 4
				LINCOLN COUN	LINCOLN COUNTYContinued				
	69	9	н	64	2-75	-	845	880	
	62	!	Ω	32	2-75	;	810	1	
	77	!	Ω	37	10-74		920	!	
15N-06E-07 BAB	190	1	H	41	10-74	-	096	817	
15N-06E-10 BBA	124	∞	Н	77	10-74	1	905	767	
15N-06E-12 BCB	130	9	н	29	10-74	-	910	789	
15N-06E-12 CBB	126	9	n	81	10-74	!!	890		
15N-06E-15 BDD	260	2	Ω	30	10-74	!	925	655	
	120	- α	· #	53	10-74	!	288	1180	
	41	∞ ∞	: =	22	10-74	;	825) 	
	27.5	2	ρ	i i	- 1	85	1 (1	
	7 7 7 7 08	, ,	, ρ.	130	7-75	07	006	720	×
	9	•	4	000	C/-/	Ď	000	07/	<
15N-06E-28 DAD	265	7	д	09	6-75	35	880		
15N-06E-29 AAA	339	7	Д	182	6-75	-	890	1	
	248	8	н	83	10-74	1	850	748	
	196	∞	S	25	2-75	¦	096	1160	×
	115	9	Ω	29	2-75	!	935	825	1
	43	9	n	7	2-75		1005		
16N-06F-05 CCC	111	¥	п	32	2_75	!	010	;	
	101	οα	; ;:	76	3-75		1025	7,90	
	97	» ve	; 1	2,2	3-75	[066	3600	×
	160	9	#	16	10-74	ļ	976	575	•
	357	9	Z	85	8-52	ļ	086	3680	×
				OKFUSKE	OKFUSKEE COUNTY				
	188	9	ж	104	1-75	!	975	370	
11N-07E-12 AAA	09	ł	1	34	2-70	!	895	!	

		×		×	×	×
 990 164 432	546	620 7 08 1 708	633 485 2750	413	172 172 830 580	256
1015 925 860 940	940 890 895 880 870	990 990 940 1010 965 910	800 845 818 850 	900 835 830 830 930	890 850 850 925 910	1000 800
		0				30
2-70 1-75 10-74 10-74	10-74 10-74 10-74 10-74 10-74 2-70	10-74 10-74 10-74 10-74	10-74 10-74 10-74 10-74 	10-74 1-71 10-74 10-74 10-74 10-74	10-74 2-70 2-70 10-74 10-74	OSAGE COUNTY 0 4 7-73
63 24 70 50	46 43 42 54 16	97 129 55 58	20 23 4 52 76 43	 23 41 44 32	49 14 23 32 47	0SAG 150 24
ринн	жііржр	шшшдшр	# D D # D D	ношнон	шшршшр	ж о
φν <u> </u>	∞	889 98	200 40	1 00000	& & W & & &	1.1
85 66 104 110	72 181 106 126 121 41	157 142 104 300 105 87	67 45 101 130 112 52	131 92 48 140 56	254 32 44 46 50 54	389 42
11N-07E-16-DCC 11N-08E-11 CBB 12N-07E-02 BBC 12N-07E-04 ABA	12N-07E-06 ADD 12N-07E-07 AAD 12N-07E-08 DAD 12N-07E-10 ABD 12N-07E-11 ABB 12N-07E-13 CDD	12N-07E-17 DCC 12N-07E-18 ADA 12N-07E-20 BBA 12N-07E-21 AAA 12N-07E-27 BBB 12N-07E-27 BBB	13N-07E-09 CCC 13N-07E-12 DCD 13N-07E-13 DDD 13N-07E-16 ADA 13N-07E-19 CCD 13N-07E-20 BBC	13N-07E-21 DDC 13N-07E-25 AAB 13N-07E-25 ABB 13N-07E-26 ABA 13N-07E-26 CCB	13N-07E-31 ADD 13N-08E-08 DAA 13N-08E-20 DDA 13N-08E-31 ADA 13N-08E-32 CDD	21N-07E-03 ABB 21N-07E-11 CAA

TABLE 2.—Continued

Location	Well depth (ft)	Casing diameter (in.)	Use of water	Depth to water (ft)	Date	Well yield (gal/min)	Altitude (ft)	Specific conductance (µmho/cm)	Chemical analyses in table 4
				OSAGE COUNT	OSAGE COUNTYContinued				
21N-08E-12 CBD 21N-08E-24 BDB 21N-08E-24 BDC 21N-09E-23 DCC	300 130 130 220	∞ ¦ ¦ ¦	ржжж	215 60 60 161	4-75	9 2	915 749 754 940	009	
22N-07E-08 CDD 22N-07E-16 BBD 22N-08E-04 BCC 22N-08E-11 DDC 22N-08E-15 CDD 22N-08E-31 ACC	150 21 120 152 250 125	101000	ннн шш	60 14 60 71 60 115	 4-75 11-73 4-75	15 20 11 11	870 765 1025 810 910	999 999 1550 360	×
22N-08E-33 BAA 22N-08E-35 BDA 22N-09E-08 ABC 22N-09E-16 BDA 22N-09E-17 CCC 23N-07E-09 BDA	100 465 110 187 200 87	0	нннрно	150 150 60 75 50 42		30 20 10	860 1020 780 805	708	× ××
23N-08E-07 DCC 23N-08E-11 DDA 23N-09E-02 BAC 23N-09E-06 CCB 23N-09E-07 DCC 23N-09E-10 DAA	350 65 141 169 201 55	 6 10 5	ннонн	85 21 32 9	4-75 4-74 10-74	"	1040 790 890 795 	2995 1360 1360 820 598	×
23N-09E-25 BCC 23N-09E-27 DDD 23N-10E-06 ACC 23N-10E-08 DDD 24N-07E-35 DCC 24N-07E-35 BCC	187 99 70 185 55	6 8 1 0 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	онннон	96 27 13 131 22 75	4-75 4-75 3-75 4-75 1-73		850 770 890 900 980	1010 150 260 	×

× ×	×		×	×	×
525 862 1320 1060	470	710 670 670	 580 1100 1420 978	1080 1090 950	210 1080 291 1200
850 850 850 820 875 885	930 920 875 1005 895	1090 980 975 960 950 1060	1065 800 780 855 1025 845	895 885 900 760 800 890	1025 1010 1005 870 980 980
	7	100		20 15	
10-74 10-74 10-74 10-74 4-75	4-75 10-74 4-75 4-75	3-75 4-73 3-75 11-72 	10-74 3-75 4-75	4-75	4-75 4-75 4-75 4-75
2 10 80 151 152	104 55 100 27 150	211 15 114 116 150 63	86 37 1133 84 85	70 4 150 21 100 170	6 9 6 1 7 7 7 4 4
шшршшш	* # # # # #	жоджж		ржжжір	ннаснн
4 1 2 3 3 4 4 4 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9	000	°	10 6 6 6	6 6 12	1 00000
27 25 26 86 227 260	280 130 200 325 107 260	300 40 235 235 300 115	235 84 106 188 172 240	97 45 255 83 200 210	28 100 60 109 222 127
24N-08E-14 DDD 24N-08E-33 CCA 24N-08E-35 ADB 24N-08E-36 CAD 24N-09E-01 AAD 24N-09E-03 DAA	24N-09E-03 CBC 24N-09E-08 BAC 24N-09E-10 BAA 24N-09E-20 ABB 24N-09E-27 ABA 24N-10E-06 BBA	25N-07E-10 AAA 25N-07E-31 ADA 25N-08E-02 DDD 25N-08E-03 DDD 25N-08E-11 ABB 25N-08E-12 DAD	25N-08E-29 ACD 25N-09E-01 BCC 25N-09E-01 DBD 25N-09E-08 DAA 25N-09E-20 CAA 25N-09E-24 BAD	25N-09E-33 ADA 25N-09E-35 BAA 25N-09E-35 BAD 25N-10E-17 CCB 25N-10E-35 DCB 26N-08E-01 ADD	26N-08E-09 BDC 26N-08E-32 BBC 26N-09E-08 BDC 26N-09E-14 ACB 26N-09E-23 CCC 26N-09E-31 CBC

Table 2.—Continued

The section The section										
DD 40 H 18 4-75 775 1750 775 7	Location	Well depth (ft)	Casing diameter (in.)	Use of water	Depth to water (ft)	Date measured	Well yield (gal/min)	Altitude (ft)	Specific conductance (µmho/cm)	Chemical analyses in table 4
ACA 2.56 — H 1.8 4-75 — 775 175 ABB 2.55 — H 140 — 900 — ABB 2.55 — H 140 — 900 — AAA 4.4 — H 15 — 775 2655 AAA 4.4 — H 15 — 900 — AAC 120 — H 15 — 900 — ACC 127 — H 30 — 900 — ACC 127 — H 30 — 900 — DDA 300 — H 46 — — 900 — DDA 300 — H 46 — 900 — DDA 13 30 — 900 — 900 — DBB					OSAGE COU	NTYContinue	PS.			
ADA 100 S 21 3-75 1000 AAA 900 H 30 940 1120 DDA 900 H 180 940 1010 DDA 300 H 480 940 1010 DAA 300 H 6 900 2070 DAB 141 U 31 3-75 900 2070 DBB 125 U 11-72 900 394 ABA 153 6 H 30 11-72 900 394 ABB 125 U 11 3-75 775 CDA 120 U 11 3-75 790 1210 CC 73 H<		40 256 255 130 227		пшшшро	18 140 50 15 27 9	4-75 3-75 3-75		775 900 925 775 900 1050	1750 2695 	×
BBB 125 S 80 3-73 820 394 ADA 153 6 H 92 900 394 DBB 78 6 H 30 11-72 775 ABD 90 6 H 29 11-72 775 DAB 125 U 11 3-75 790 1210 BCD 100 8 H 37 3-75 900 580 CCC 73 H 37 3-75 760 890 BCA 125 6 H 37 5 60 890 BCC 73 8 U 42 12-71 5 900 890 BCD 6 H 36 12-71 5 900<		100 125 900 300 500 160	°	оннннго	21 30 180 180 460 6	3-75		1000 850 850 940 1030 875 900	1120 4000 1010 2070 893	****
BCD 100 8 H 37 3-75 900 580 CCC 73 H 21 3-75 760 890 BCA 125 6 H 36 5 3520 BDC 65 8 U 42 12-71 875 922 DDC 80 H 9 11-72 800		125 153 78 90 125	100011	онннон	80 92 30 29 11 30	3-73 11-72 11-72 3-75		820 900 735 775 800 790	394	× ×
		100 73 125 65 59 80	ω I ω ω ω ω	ннноон	37 21 36 42 18	3-75 3-75 12-71 3-75 11-72	"	900 760 760 875 800	580 890 3520 922	×

	× × ×		× ×	×		× ××	× ×	\bowtie
	575 864 1300 1010		2090	830 872		2900 2880 369 1650	1030 960 1170 760 1360	1020 591 1360
	920 830 820 810 890		945 950 930 1065	1015 970 985 995		890 900 850 1005 915	790 860 825 860 920	840 890 905 930
	500		25 55			~		
CUNTY	10-75 2-75 4-75 4-75	IE COUNTY	11-74 11-74 11-74 1-75	1-75 1-75 6-70	COUNTY	5-72		4-75 5-72 5-72
PAYNE COUNTY	167 36 18 48 7	POTTAWATOMIE COUNTY	238 238 208 140 63	215 3 40 53	PAWNEE COUNTY	60 70 192	90	44 15 34
	дοοπин		一名名其口			*****	1 = = = = =	нрннр
	400488		10010	9 8		0000 0	101110	00110
	697 97 30 136 183		668 650 650 248 165	700 47 220 72		137 90 142 200 28	20 114 80 128 266 156	90 35 85 92
	17N-05E-03 ACB 17N-06E-16 CDD 18N-06E-15 DDD 18N-06E-17 CCC 18N-06E-28 BCC		08N-05E-33 AAB 08N-05E-33 ABB 08N-05E-33 ACC 09N-05E-04 DCC	09N-05E-08 CAA 09N-05E-29 AAA 11N-06E-06 CCC 11N-06E-15 ADD		20N-07E-01 CDD 20N-07E-01 DAD 20N-07E-05 ACA 20N-07E-27 BBD 20N-08E-05 DDA 20N-08E-06 CCC	20N-08E-09 DCD 20N-08E-12 CCC 20N-08E-17 AAD 20N-08E-19 DCA 21N-07E-21 ADB 21N-07E-24 CCD	21N-07E-24 CDD 21N-07E-34 CCD 21N-08E-20 DCA 21N-08E-29 AAD 22N-07E-20 DBC

Table 2.—Continued

SEMINOLE COUNTY BBB 700 8 H 60 111-74 1040 ABB 202 6 H 170 111-74 1040 ABB 202 6 H 184 110-74 950 CCD 150 6 H 184 110-74 950 CCD 150 6 H 184 110-74 950 ACC 214 H 70 111-74 950 ACC 81 6 H 184 110-74 950 ACC 81 6 H 187 111-74 950 ACC 81 6 H 28 111-74 950 ACC 81 6 H 20 28 5-70 950 ACC 91 6 H 20 36 111-74 950 ACC 17 6 6 H 20 36 111-74 950 ACC 91 6 H 20 36 111-74 950 ACC 91 6 H 20 36 111-74 940 ACC 92 92 92 92 92 92 92 92 92 92 92 92 92	The control of the	;	Well depth	Casing diameter	Use of	Depth to water	Date .	Well yield	Altitude	Specific conductance	Chemical analyses in
BBB 700 8 H 60 11-74 1040 ABB 202 6 H 37 11-74 1020 465 BDC 1536 H 170 11-74 920 465 BDC 1536 H 170 11-74 920 465 CCD 1530 9 11-74 920 1220 CDD 150 9 11-74 915 1100 CDD 10 9 11-74 915 1100 CDD 10 14 24 11-74 915 1100 CDD 11 3 11-74 910 1100 CDD 11 12 11-74 9 1100 1100 AAA 5 6	SBB 700 8 H 60 11-74 900 DAB 236 H 37 11-74 920 DAB 236 H 37 11-74 920 CD 150 6 H 34 11-74 920 CD 150 H 170 11-74 920 CD 150 H 24 11-74 920 CD 170 H 39 11-74 920 ACC 214 H 36 11-74 920 ACC 81 H 36 11-74 920 ACC 81 H 49 11-74 920 ACC 81 H 49 11-74 920 AAA 40 H 49 11-74		(IE)	(1n.)	water	(IE)	measured	(gar/min)	(11)	(mmno/cm)	table 4
BBB 700 8 H 60 11-74 1040 ABB 202 6 H 170 11-74 920 1465 BDA 1356 H 170 11-74 920 1465 CCD 1123 6 H 24 11-74 920 1465 CDD 123 11-74 920 1120 CDD 100 H 11-74 920 1120 CDD 100 H 11-74 920 1120 AAA 52 6 H 26 11-74 920 1120 AAA 52 6 H 28 11-74 920 1120 AAA 52 6 H 28 11-74 920 1120 AAB 18 1	ABB 700 8 H 60 11-74 1040 ABB 202 6 H 37 11-74 920 BBC 133 11-74 950 CCD 1123 6 H 11-74 950 CDD 123 6 H 39 11-74 900 CDD 176 14 36 11-74 900 CDD 176 24 11-74 900 ACC 214 24 11-74 900 ACC 214 24 11-74 900 ACC 214 24 11-74 900 ACC 18 1 23 11-74 900 ACC 18 1 11-74 900					SEMIN	OLE COUNTY				
BBB 700 8 H 70 11-74 920 465 DAD 236 H 170 11-74 920 465 CCD 123 H 170 11-74 920 465 CCD 123 H 70 11-74 915 1100 CDD 150 H 71 11-74 915 1100 CDD 160 24 11-74 920 1100 ACC 214 24 11-74 920 1100 ACC 6 H	ABB 700 8 H 900 11-74		0	c	;	Ç	ì		(
AMB 202	ABB 202		00/	∞ ,	щ	09	11-/4	!	1040	1 1	
BDAD 236 H 170 11-74 950 1220 CCD 150 H 170 11-74 950 1220 CCD 150 H 71 11-74 950 1100 CDD 70 24 15-74 950 1100 CDD 70 24 11-74 950 1100 ACC 214 24 11-74 950 1100 ACC 214 24 11-74 950 1100 ACC 214 39 11-74 950 1400 ACC 81 4 49 11-74 915 1400 ACC 65 H 49 11-74 915 1400 ACC 65 H 49 1	DAD 236 H 170 1174 950 CCD 123 6 H 24 570 915 BAB 160 H 71 1174 915 BAB 160 H 24 174 915 ACC 214 23 11-74 915 ACC 214 24 11-74 915 ACC 214 1 39 11-74 915 ACC 214 H 39 11-74 915 ACA 52 6 H 49 11-74 915 ACA 40 0 2 47 11-74 915 AAA 40 6 H 49 11-74 915 CD 124		202	9	I	3/	11-/4	!	920	465	
BDC 150 6 H 84 11-74 855 790 BAD 150 6 H 84 11-74 855 790 BAB 160 H 71 11-74 950 1120 CDD 170 9 11-74 90 1120 AAC 214 14 36 11-74 90 1120 ACC 214 24 11-74 90 1100 AAA 52 6 H 28 11-74 90 1100 AAA 50 6 H 49 11-74 90 1100 AAA 84 5 H 28 11-74 90 1100 AAA 84 6 H 11-74 90 1100 CDB 80	BDC 150 6 H 84 11-74 855 CCD 130 6 H 84 11-74 915 BAB 160 H 71 11-74 915 CDD 70 H 71 11-74 915 AAC 214 H 39 11-74 930 CCC 81 6 H 24 11-74 930 AAA 52 6 H 28 11-74 930 CCC 81 6 H 49 11-74 915 AAA 84 5 H 49 11-74 915 CD H 49 11-74 915 CD H 49 11-74 915 CD H 36		236	¦	Ħ	170	11-74	[]	950	1220	×
CCD 123 6 U 24 5-70 915 DAD 196 8 - 39 11-74 920 1120 DAD 196 8 - 39 11-74 930 1120 ACC 214 - 4 11-74 930 1120 CCC 214 - 4 11-74 930 580 CCC 214 - 4 11-74 930 580 AAC 214 - 4 11-74 950 1400 AAA 5 6 H 49 11-74 955 1400 AAA 40 6 H 11-74 915 11-74 915 1100 CD 8 1 11-74 915 1110 1110 1110 1110	CCD 123 6 U 24 5-70 915 BAB 160 H 71 11-74 910 DAD 170 24 11-74 930 ACC 214 24 11-74 930 ACC 81 H 36 11-74 930 ACC 81 H 36 11-74 950 ACC 81 H 28 11-74 950 ACC 85 6 H 49 11-74 950 ACA 82 6 H 20 11-74 915 CDB 82 1 17-74 925 CDB 82 1 11-74 925 CDB 82 1 11-74		150	9	н	84	11-74	1 1	855	190	
BAB 160 — H 71 11-74 — 920 1100 CDD 70 — 39 11-74 — 900 1120 ACC 814 — 24 11-74 — 900 1120 ACC 81 — 4 11-74 — 900 1120 ACC 81 — 4 11-74 — 900 1120 ACC 81 6 H 36 11-74 — 950 1400 ACC 65 H 49 11-74 — 950 1400 AAA 40 6 H 15 11-74 — 925 140 CDB 82 11-74 — 925 145 1- 1400 AAA 40 6 H 11-74 — 925 145 CDB 82 11-74 — 920 1100 1	BAB 160 — H 71 11-74 — 920 CDD 196 8 — 24 11-74 — 900 CCC 814 — 24 11-74 — 900 CCC 814 — 24 11-74 — 950 AAA 52 6 H 36 11-74 — 950 AAA 52 6 H 28 5-70 — 950 AAA 84 5 H 28 5-70 — 925 CDB 40 H 49 11-74 — 925 CDB 82 5 H 20 5-70 — 925 CDB 84 5 H 36 11-74 — 925 CDB 84 124 11-74 — 925 925 BBB 124 11-74 — 925 <td< td=""><td></td><td>123</td><td>9</td><td>Ω</td><td>24</td><td>5-70</td><td> </td><td>915</td><td>!</td><td></td></td<>		123	9	Ω	24	5-70		915	!	
CDB 70 39 11-74 900 1120 DAD 196 24 11-74 930 580 ACC 214 4 39 11-74 930 580 ACC 214 4 1 39 11-74 930 1400 AAA 52 6 0 1 28 5-70 1400 1400 AAA 40 6 0 0 3 11-74 915 55 AAA 40 6 0 0 7 11-74 925 57 AAA 40 6 0 0 7 11-74 925 575 AAA 84 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CDD 70 39 11-74 900 DAD 196 24 11-74 930 CCC 214 24 11-74 930 CCC 214 24 11-74 930 AAA 52 6 H 28 5-70 865 BBB 180 H 15 11-74 915 CDB 4 0 U 36 11-74 915 CDB 4 0 U 36 11-74 915 CDB 82 4 U 36 11-74 915 CDB 82 11-74 925 915 CDB 82 11-74 917 915 CDB 82 11-74		160	!	н	71	11-74		920	1100	
CDD 70	CDD 70 39 11-74 900 ACC 214 24 11-74 900 ACC 214 24 11-74 900 ACC 214 49 11-74 900 ACC 65 H 28 5-70 950 ACC 65 H 49 11-74 900 ACC 65 H 49 11-74 915 AAA 40 6 U 36 11-74 915 CDD 82 40 11-74 920 920 CDD 82 11-74 920 920 CDD 126+ 6 H 121 11-74 945 DDD 126+ 6 H 120 11-74		ſ			ć	ì		0	•	
DAD 196 8 - 24 11-74 930 580 ACC 81 - 4 11-74 930 580 CCC 81 - 4 11-74 950 1400 AAA 52 6 9 11-74 950 1400 AAA 40 6 9 11-74 950 1400 AAA 40 6 9 11-74 915 650 CD 82 6 9 11-74 915 650 AAA 84 5 9 11-74 920 545 CD 82 11-74 920 545 1110 CD 12 11-74 920 545 1110 BD 126 9 11-74 920 545 1110 CD <t< td=""><td>ACC 214 930 ACC 81 4 11-74 930 CCC 81 4 36 11-74 930 AAA 52 6 H 28 5-70 950 AAA 40 6 H 49 11-74 915 AAA 40 6 H 15 11-74 915 CD AAA 84 5 H 20 5-70 915 AAA 84 5 H 20 5-70 915 CD 10 36 H 20 5-70 915 BDB 124 6 H 121 11-74 945 BDD 126+ 6 H 80 11-74 945 BDD 124 9 11-74<</td><td></td><td>7.0</td><td>1</td><td>ı</td><td>36</td><td>11-/4</td><td>!</td><td>006</td><td>1120</td><td></td></t<>	ACC 214 930 ACC 81 4 11-74 930 CCC 81 4 36 11-74 930 AAA 52 6 H 28 5-70 950 AAA 40 6 H 49 11-74 915 AAA 40 6 H 15 11-74 915 CD AAA 84 5 H 20 5-70 915 AAA 84 5 H 20 5-70 915 CD 10 36 H 20 5-70 915 BDB 124 6 H 121 11-74 945 BDD 126+ 6 H 80 11-74 945 BDD 124 9 11-74<		7.0	1	ı	36	11-/4	!	006	1120	
ACC 214 — H 39 11-74 — 870 555 CCC 81 6 H 36 11-74 — 870 555 AAA 52 6 H 28 5-70 — 950 1400 AAA 40 6 H 49 11-74 — 950 1400 AAA 40 6 H 15 11-74 — 915 650 CDD 82 6 H 15 11-74 — 925 535 CDD 82 4 U 36 11-74 — 925 650 CDD 82 11-74 — 925 650 1110 BDD 124 11-74 — 925 1440 BDD 124 11-74 — 925 1140 BDD 124 11-74 — 925 1140 BDD	ACC 214 — H 39 11-74 — 870 CCC 81 6 H 36 11-74 — 870 AAA 52 6 H 49 11-74 — 870 ABB 180 — H 49 11-74 — 915 AAA 84 6 H 15 11-74 — 925 CDD 82 4 U 36 11-74 — 925 CDD 82 4 U 36 11-74 — 925 CDD 82 11-74 — 925 925 — CDD 82 11-74 — 925 — 925 BDD 124 121 11-74 — 945 925 BDD 124 11-74 — 945 925 925 BDD 124 11-74 — 945		196	8	1	24	11-74	1 1	930	580	
CCC 81 6 H 36 11-74 950 1400 AAA 52 6 H 49 11-74 950 1400 BBB 180 H 49 11-74 955 555 CDD 82 11-74 925 557 1895 CDD 82 11-74 925 545 545 CDD 82 11-74 920 845 545 AAA 84 5 H 20 5-70 1890 545 1110 CDD 124 11-74 945 1110 1130 545 1110 BDD 124+ 6 H 11-74 945 1110 ABB 180 6 H 46 11-74 945 1110 CDD 125+	CCC 81 6 H 36 11-74 950 AAA 52 6 U 28 5-70 950 ACC 65 H 12 11-74 915 BBB 180 H 15 11-74 925 AAA 40 6 U 36 11-74 925 AAA 84 5 H 20 5-70 925 CD BC U 36 U 36 11-74 925 CD BC U 36 U 36 11-74 925 BD 126+ 6 H 87 11-74 945 DD 143 0 11-74 945 DD 143 0 11-74 942 DD 6		214	;	Ħ	39	11-74	1	870	555	
AAA 52 6 U 28 5-70	AAA 52 6 U 28 5-70		2	v	я	36	11-74	ļ	950	1400	
ACC 655 6 H 49 1570 865 535 ACC 655 6 H 49 1574 865 535 AAA 40 6 U 7 7 11-74 925 535 AAA 84 5 H 20 36 11-74 920 545 AAA 84 5 H 20 36 11-74 920 545 AAA 84 6 U 36 11-74 920 545 BCB 321 6 H 221 11-74 945 1110 BCB 321 6 H 46 11-74 945 1110 BCB 121 11-74 945 1110 BCB 121 11-74 945 1110 BCB 121 6 H 87 11-74 945 1110 BCB 121 6 H 46 11-74 945 1110 BCB 121 11-74 94	AAA 32 6 6 H 49 15 11-74 865 BBB 180 H 15 11-74 865 CD 82 4 0 0 36 11-74 925 CD 82 6 H 20 36 11-74 925 CD 82 6 H 20 36 11-74 925 CD 82 6 H 20 36 11-74 945 CD 121 11-74 945 CD 1224 945 CD 1224 975 CD 1234 975 CD 1244 975 CD 1254 975 CD 1254 174 975 CD 1254 174 975 CD 1254 174 975 CD 1254 1754 975 CD 1254 1754 975 CD 1254 1754 975 CD 1254 1754 975 CD 1255 1755 975 CD 1255		7 0	.	: :	200	77				
ACC 65 6 H 49 11-74 865 535 BBB 180 H 15 11-74 915 650 CDD 82 6 U 7 11-74 925 CDD 82 6 U 36 11-74 920 545 CDD 82 6 U 54 11-74 1890 CDD 82 6 U 54 11-74 1340 BDD 126+ 6 U 54 11-74 1340 BDD 126+ 6 H 60 11-74 945 1110 ABB 180 6 H 46 11-74 945 1110 ABB 180 6 H 46 11-74 945 1110 CC 75	ACC 65 6 H 49 11-74 865 BBB 180 H 15 11-74 915 AAA 40 6 U 7 11-74 925 CDD 82 4 U 36 11-74 920 CDD 82 4 U 36 11-74 920 CCD 82 6 U 54 11-74 920 CCD 82 6 U 54 11-74 945 BDD 126+ 6 N 60 11-74 945 DCD 217 6 H 87 11-74 945 DDD 125+ 6 U 37 11-74 943 DDD 125+ U 32 11-74 975 DDA 131 6 U 32 11-74 975 DDA 550 P 284 11-74 975 DDA 510 6 U 184 11-74 975 DDA 511 6 U 184 11-74 975 DDA 512 6 U 184 11-74 975 DDA 513 6 U 184 11-74 975 DDA 514 H 194 11-74 920 DDA 517 6 U 184 11-74 970 DDC 215+ H 194 11-74 920		75	۰۵)	97	0/-0	!	1 :	1	
BBB 180 H 15 11-74 915 650 CDD 82 4 0 36 11-74 925 545 CDD 82 4 0 36 11-74 925 545 CDD 82 6 0 0 54 11-74 1890 CDD 121 11-74 925 1340 BDD 126+ 6 H 60 11-74 945 1110 ABB 180 6 H 60 H 46 11-74 945 1110 ABB 180 6 H 46 11-74 945 1110 ABB 180 6 H 46 11-74 940 940 ABB 180 6 H 46 11-74 943 940	BB 180 H 15 11-74 915 CDD 82 4 0 36 11-74 925 CDD 82 4 0 36 11-74 925 CDD 82 6 U 36 11-74 920 CDD 321 6 H 121 11-74 945 BDD 126+ 6 H 60 H 60 11-74 945 DDD 126+ 6 H 46 11-74 945 DDD 143 U 13 5-70 945 DDD 143 U 37 11-74 943 ADD 125+ 6 U 33 11-74 943 DDA 135+ 6 U 32 11-74 930		65	9	Ħ	67	11-74	!	865	535	
BAB 180 H 15 11-74 915 920 CAA 84 6 U 36 11-74 920 545 AAA 84 5 H 20 5-70 925 CCD 82 6 U 36 11-74 920 545 BDB 126+ 6 H 121 11-74 945 1110 DCD 217 6 H 87 11-74 945 1110 ABB 180 6 H 46 11-74 945 1110 CCC 75 6 H 46 11-74 945 1110 AAD 125+ 6 U 37 11-74 943 385 DDD 75 U 37 11-74 943 945	BASA 180 H 13 11-74 915 CAA 40 6 U 36 11-74 925 CAA 84 5 H 20 5-70 925 CCD 82 6 U 54 11-74 925 CCD 82 6 U 54 11-74 925 BDD 126+ 6 U 54 11-74 945 11 BDD 126+ 6 H 87 11-74 945 11 CCD 217 6 H 46 11-74 945 11 ABB 180 6 H 46 11-74 945 11 ADD 125+ 6 U 33 11-74 912 DDA 131-74 U 8 11-74		6		;		,,				
AAA 40 6 U 7 11-74 925 CDB 82 4 U 36 11-74 920 545 AAA 84 5 H 20 5-70 1890 CCD 82 6 U 54 11-74 1890 CCD 82 6 U 54 11-74 945 1110 BDB 126+ 6 H 87 11-74 945 1110 ABB 180 6 H 46 11-74 980 676 CC 75 6 H 46 11-74 980 676 DDD 125+ 6 U 37 11-74 975 DDD 75 U 59 12-74 970 460 DDC	AAA 40 6 U 7 11-74 925 CDD 82 4 U 36 11-74 920 CDD 82 5 H 20 5-70 920 CD 82 6 U 54 11-74 920 BCB 321 6 H 121 11-74 945 1 BDD 126+ 6 H 87 11-74 945 1 DCD 217 6 H 46 11-74 945 1 ABB 180 6 H 46 11-74 943 DDD 143 U 37 11-74 943 DDD 15-+ U 37 11-74 930 DDD 75 U 8 11-74		180	-	Ξ;	7	17-/4	! !	915	050	
CDD 82 4 U 36 11-74 920 545 CCD 82 6 U 5-70 1890 CCD 32 11-74 1890 CCD 121 11-74 1890 BDD 126+ 6 H 60 11-74 945 1110 BDD 126+ 6 H 87 11-74 945 1110 BDD 126+ 6 H 87 11-74 940 946 CC 75 6 U 13 5-70 943 385 AAD 125+ 6 U 59 12-74 943 385 DDD 75 U 59 12-74 970 DDA 131 6 H 8 11-74 970 460 </td <td>CDD 82 4 U 36 11-74 920 AAA 84 5 H 20 5-70 920 CCD 82 6 U 54 11-74 945 BCB 321 6 H 60 11-74 945 BDC 217 6 H 87 11-74 945 DCD 217 6 H 46 11-74 980 AAB 143 U 37 11-74 943 DDD 143 U 37 11-74 943 DDD 15 U 37 11-74 913 DDD 75 U 8 11-74 925 DDA 550 P P 284 11-74 925 <td></td><td>40</td><td>9</td><td>Ω</td><td>7</td><td>11-74</td><td><u> </u></td><td>925</td><td>1</td><td></td></td>	CDD 82 4 U 36 11-74 920 AAA 84 5 H 20 5-70 920 CCD 82 6 U 54 11-74 945 BCB 321 6 H 60 11-74 945 BDC 217 6 H 87 11-74 945 DCD 217 6 H 46 11-74 980 AAB 143 U 37 11-74 943 DDD 143 U 37 11-74 943 DDD 15 U 37 11-74 913 DDD 75 U 8 11-74 925 DDA 550 P P 284 11-74 925 <td></td> <td>40</td> <td>9</td> <td>Ω</td> <td>7</td> <td>11-74</td> <td><u> </u></td> <td>925</td> <td>1</td> <td></td>		40	9	Ω	7	11-74	<u> </u>	925	1	
AAA 84 5 H 20 5-70 1890 CCD 82 6 U 54 11-74 855 1340 BCB 321 6 H 121 11-74 945 1110 BDD 126+ 6 H 87 11-74 945 1110 ABB 180 6 H 46 11-74 945 1110 ABB 180 6 H 46 11-74 980 676 CCC 75 6 U 13 5-70 943 385 AAD 125+ 6 U 59 12-74 943 385 DDD 75 U 8 11-74 925 815 DDC 550 U 8 11-74 920 445	AAA 84 5 H 20 5-70 855 11-74 855 11-74 855 11-74 845 11-74 945 11-74 945 11-74 980 ABB 180 6 H 46 11-74 943 943 CCC 75 6 U 37 11-74 943 DDD 125+ U 8 11-74 975 DAA 131 6 H 284 11-74 975 DDC 550 P P 284 11-74 970 DDD 410 6 U 184		82	7	Ω	36	11-74	 	920	545	
CCD 82 6 U 54 11-74 BCB 321 6 H 121 11-74 855 1340 BDD 126+ 6 H 60 11-74 945 1110 ABB 180 6 H 46 11-74 980 676 CCC 75 6 U 13 5-70 980 676 DDD 143 U 37 11-74 980 676 CC 75 6 U 37 11-74 943 385 AAD 125+ 6 U 59 12-74 973 DDD 75 U 8 11-74 925 445 DAA 131 6 H 23 11-74 925 815	CCD 82 6 U 54 11-74 855 1 BCB 321 6 H 121 11-74 855 1 BDD 126+ 6 H 87 11-74 945 1 DCD 217 6 H 87 11-74 980 CC 125 6 U 13 5-70 980 CC 75 6 U 37 11-74 943 DDD 125+ 6 U 37 11-74 943 DDA 125+ 6 U 8 11-74 925 DDA 131 6 H 23 11-74 925 DDC 550 P P 284 11-74 970 DDC 550 H H 194 </td <td></td> <td>84</td> <td>5</td> <td>Ħ</td> <td>20</td> <td>5-70</td> <td>1 1</td> <td>;</td> <td>1890</td> <td></td>		84	5	Ħ	20	5-70	1 1	;	1890	
BCB 321 6 H 121 11-74 855 1340 BDD 126+ 6 H 60 11-74 945 1110 DCD 217 6 H 87 11-74 940 676 ABB 180 6 H 46 11-74 980 676 CCC 75 6 U 37 11-74 943 385 DDD 125+ 6 U 37 11-74 943 385 DDD 125+ 6 U 59 12-74 943 385 DDD 75 U 8 11-74 975 DDA 131 6 H 23 11-74 925 445 DDC 550 P P 284 11-74 970 <td>BCB 321 6 H 121 11-74 855 1 BDD 126+ 6 H 60 11-74 945 1 DCD 217 6 H 87 11-74 980 ABB 180 6 H 46 11-74 980 CCC 75 6 U 37 11-74 943 DDD 125+ 6 U 59 12-74 975 DDD 75 U 8 11-74 930 DDAA 131 6 H 23 11-74 925 DDC 550 P P 284 11-74 970 DDC 550 H 194 11-74 970 DDD 410 6 U 184 11-74</td> <td></td> <td>82</td> <td>9</td> <td>Ω</td> <td>24</td> <td>11-74</td> <td>i !</td> <td>!</td> <td>1</td> <td></td>	BCB 321 6 H 121 11-74 855 1 BDD 126+ 6 H 60 11-74 945 1 DCD 217 6 H 87 11-74 980 ABB 180 6 H 46 11-74 980 CCC 75 6 U 37 11-74 943 DDD 125+ 6 U 59 12-74 975 DDD 75 U 8 11-74 930 DDAA 131 6 H 23 11-74 925 DDC 550 P P 284 11-74 970 DDC 550 H 194 11-74 970 DDD 410 6 U 184 11-74		82	9	Ω	24	11-74	i !	!	1	
BDD 124 11-74 945 1170 BDD 126+ 6 H 87 11-74 945 1110 ABB 180 6 H 46 11-74 940 676 CCC 75 6 U 13 5-70 943 385 CCC 75 6 U 37 11-74 943 385 AAD 125+ 6 U 59 12-74 943 385 DDD 125+ 6 U 8 11-74 930 DDD 75 U 8 11-74 930 DAA 131 6 H 23 11-74 925 445 DDC 550 970 6 H 970 660 DDC 215+	BDCD 221 6 H 87 11-74 945 1 DCD 217 6 H 87 11-74 945 1 ABB 180 6 H 46 11-74 980 CCC 75 6 U 13 5-70 980 DDD 143 U 37 11-74 943 DDD 143 U 37 11-74 943 DDD 125+ U 8 11-74 930 DDA 131 6 U 32 11-74 925 DDC 550 P P 284 11-74 970 DDC 550 P P B 11-74 970 DDD 410 6 U 184 11		100	,		101	11 7%		25.5	13/0	>
BDD 126+ 6 N 60 11-74 94.5 111.0 ABB 180 6 H 87 11-74 98.0 676 CC 75 6 H 46 11-74 98.0 676 DDD 13 5-70 94.3 38.5 DDD 125+ 6 U 37 11-74 94.3 38.5 DDD 125+ 6 U 59 12-74 97.5 DDD 75 U 8 11-74 93.0 DDD 75 93.0 92.5 44.5 DDA 131 6 H 23 11-74 97.0 460 DDC 215+ P 284 11-74 97.0 460 DDC 215+	BDD 126+ 6 N 60 11-74 945 1 DCD 217 6 H 87 11-74 945 1 ABB 180 6 H 46 11-74 980 CC 75 6 U 37 11-74 943 DDD 143 U 37 11-74 943 AAD 125+ 6 U 59 12-74 975 DDD 75 U 32 11-74 930 BDA 92 6 U 32 11-74 925 DDC 550 P P 284 11-74 970 DDC 215+ H 194 11-74 920 BBC 178		176	ο ·	4	777	77-14	 	7.0	1040	< :
DCD 217 6 H 87 11-74 870 940 ABB 180 6 H 46 11-74 980 676 CCC 75 6 U 13 5-70 943 385 DDD 1443 U 37 11-74 943 385 AAD 125+ 6 U 59 12-74 975 DDD 75 U 8 11-74 930 DDD 75 930 930 DDA 131 6 H 23 11-74 925 445 DDC 550 P 284 11-74 920 460 DDC 215+ H 11-74 920 460 ABC 11-7	DCD 217 6 H 87 11–74 870 ABB 180 6 H 46 11–74 980 CCC 75 6 U 13 5–70 943 DDD 143 U 37 11–74 943 AAD 125+ 6 U 59 12–74 975 DDA 131 6 H 23 11–74 930 DDA 131 6 H 23 11–74 925 DDC 550 P P 284 11–74 970 DDC 215+ H 194 11–74 920 BBC 110 920 BBC 110 920 110		126+	9	z	09	11-74		945	1110	×
ABB 180 6 H 46 11-74 980 676 CCC 75 6 U · 13 5-70 943 385 DDD 143 U 37 11-74 943 385 ADD 125+ 6 U 59 12-74 975 DDD 125+ 6 U 59 12-74 930 DDD 75 U 32 11-74 925 445 DDA 131 6 H 23 11-74 925 815 DDC 215+ H 194 11-74 920 500 DDC 215+ H 194 11-74 920 2086	ABB 180 6 H 46 11-74 980 CCC 75 6 U 13 5-70 943 DDD 143 U 37 11-74 943 AAD 125+ 6 U 59 11-74 975 DDD 75 U 32 11-74 930 DDA 131 6 H 23 11-74 925 DDC 550 P 284 11-74 970 DDC 550 P P 284 11-74 970 DDC 215+ H 194 11-74 970 BBC 178 925 ABC 178 920 <td></td> <td>217</td> <td>9</td> <td>н</td> <td>87</td> <td>11-74</td> <td>!</td> <td>870</td> <td>940</td> <td></td>		217	9	н	87	11-74	!	870	940	
CCC 75 6 U · 13 5-70 943 385 DDD 143 U · 37 11-74 943 385 AAD 125+ 6 U · 59 12-74 975 DDD 75 U · 8 11-74 930 DDD 75 U · 8 11-74 925 445 DAA 131 6 H · 23 11-74 925 460 DDC 550 P · 284 11-74 970 460 DDC 215+ H · 194 11-74 970 460 BRC 178 920 2086	CCC 75 6 U 13 5-70 943 DDD 143 U 37 11-74 943 AAD 125+ 6 U 59 12-74 975 DDD 75 U 8 11-74 930 DDA 131 6 H 23 11-74 925 DDC 550 P 284 11-74 970 DDC 215+ H 194 11-74 970 BBC 178 H 184 11-74 920 2		180	9	=	949	11-74	!!	980	929	×
DDD 143 943 AAD 125+ 6 U 59 12-74 975 DDD 75 U 59 12-74 975 BDA 125+ 6 U 32 11-74 975 DAA 131 6 H 23 11-74 925 DDC 550 P 284 11-74 970 DDC 215+ H 194 11-74 970 BBC 178 970 970 ABC 178 970 ABC 178 920 2	DDD 143 943 AAD 125+ 6 U 59 12-74 975 DDD 75 U 59 12-74 975 BDA 125+ 6 U 32 11-74 925 DAA 131 6 H 23 11-74 925 DDC 550 P 284 11-74 970 DDC 215+ H 194 11-74 970 BBC 178 H 184 11-74 920 2		7.5	9		13	5-70	;	!	1	
DDD 143 AAD 125+ 6 U 59 12-74 975 DDD 75 U 59 11-74 930 BDA 92 6 U 32 11-74 925 DDC 550 P 284 11-74 925 DDC 215+ P 284 11-74 970 DDD 410 6 U 184 11-74 970 RRC 178 920 2 RRC 178 920 2	DDD 143 945 AAD 1254 975 DDD 75 975 DDD 75 975 DDA 131 6 U 32 11-74 925 DDA 131 6 H 23 11-74 925 DDC 550 P 284 11-74 970 DDC 215+ H 194 11-74 970 BBC 178 H 184 11-74 970)	> =) [70		670	305	
AAD 125+ 6 U 59 12-74 975 DDD 75 U 8 11-74 930 BDA 92 6 U 32 11-74 925 DAA 131 6 H 23 11-74 925 DDC 250 P 284 11-74 970 DDC 215+ H 194 11-74 970 BRC 178 H 594 11-74 920	AAD 125+ 6 U 59 12-74 975 DDD 75 U 8 11-74 930 BDA 131 6 U 32 11-74 925 DDC 131 6 H 23 11-74 925 DDC 215+ H 194 11-74 970 DDD 410 6 U 184 11-74 875 BBC 178 920 2		T43	ŀ	-	70	11-14	 	945	000	
DDD 75 U 8 11-74 930 BDA 92 6 U 32 11-74 925 DAA 131 6 H 23 11-74 925 DDC 550 P 284 11-74 970 DDC 215+ H 194 11-74 970 DDC 215+ H 194 11-74 970 RRC 178 920 RRC 178 920	DDD 75 U 8 11-74 930 BDA 92 6 U 32 11-74 925 DAA 131 6 H 23 11-74 925 DDC 550 P 284 11-74 970 DDC 215+ H 194 11-74 1020 BDD 410 6 U 184 11-74 875 BBC 178 920 2		125+	9	D	59	12-74	!!!	975	1 ! !	
BDA 92 6 U 32 11-74 925 DAA 131 6 H 23 11-74 925 DDC 550 P 284 11-74 970 DDC 215+ H 194 11-74 1020 DDC 215+ H 194 11-74 970 RRC 178 920 220	BDA 92 6 U 32 11-74 925 DAA 131 6 H 23 11-74 925 DDC 550 P 284 11-74 970 DDC 215+ H 194 11-74 1020 BBC 178 920 5		7.5	;	Ω	80	11-74	1	930	!	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	bDA 32 11-74 925 DAA 131 6 H 23 11-74 925 DDC 250 P 284 11-74 970 DDC 215+ H 194 11-74 1020 DDD 410 6 U 184 11-74 875 BBC 178 920 5		ć		:	Ċ	٠,		0	277	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DAA 131 6 H 23 11-74 925 DDC 550 P 284 11-74 970 DDC 215+ H 194 11-74 1020 DDD 410 6 U 184 11-74 875 BBC 178 920		76	٥	>	32	TT-/4	 	923	440	
DDC 550 P 284 11-74 970 DDC 215+ H 194 11-74 1020 DDD 410 6 U 184 11-74 875 BRC 178 920 5	DDC 550 P 284 11-74 970 DDC 215+ H 194 11-74 1020 DDD 410 6 U 184 11-74 875 BBC 178 6920 5		131	9	н	23	11-74	-	925	815	
DDC 215+ H 194 11-74 1020 DDD 410 6 U 184 11-74 875 BRC 178 920 5	DDC 215+ H 194 11-74 1020 DDD 410 6 U 184 11-74 875 BBC 178 920		550	;	Д	284	11-74	1 1	970	7 4 60	
DDD 410 6 U 184 11-74 875 875 875 875 875 875 875 875 875 875	DDD 410 6 U 184 11-74 875 BBC 178 920		215+	ļ	=	194	11-74	<u> </u>	1020	650	
RRC 178 920	BBC 178 920		410	4	: =	187	11-74		875	:	
			178) <u> </u>	, ,	·		 	920	2086	

\times \times \times	× ×	×	××	×	××	×
6750 674 770 445 845	430 2500 352 103	2600 640 	1360 490 374 	2500 2260 	 117 275 515 365	460 1380
955 975 930 880 935	8 8 9 8 9 4 5 9 4 5 5 1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1	995 980 962 915 900	930 935 915 895	875 900 850 870 855	860 858 990 1040 945	 965 970
	8		150 290 90 170 200	135 140 80	50 1150 	
11-74 11-74 11-74 11-74	11-74 11-74 4-71 11-74 5-70 5-70	11-74 12-74 12-74 12-74 			2-74 1-70 12-74 12-74	5-70 5-70 1-75 1-70
162 195 174 91	105 20 10 78 10 16	26 158 29 49 173 114	258 217 217 150	198	126 200 42 86 129	14 20 29 15
	C H H H H H	##D#& D	a a a a a a	ангана	ттон	ноно
99999	100100	6 6 6 11 8	21 8 21 1 1 21	61	111000	& & & &
500 500 550 165 125	600 50 50 100 55 40	135 180+ 112 110 718 496	753 816 757 650 704 734	698 200 450 734 641 625	553 620 150 120 165 250	55 215 189 38
08N-06E-14 DCC 08N-06E-14 DDD 08N-06E-21 DAA 08N-06E-25 CCD 08N-06E-26 CDC	08N-07E-07 ADD 08N-07E-29 ABA 08N-07E-31 BAB 08N-07E-32 CCD 08N-07E-36 CCC	09N-05E-03 BBA 09N-05E-11 AAA 09N-05E-15 DDD 09N-05E-34 AAD 09N-06E-17 AC-	09N-06E-20 AA- 09N-06E-20 ABD 09N-06E-21 DBC 09N-06E-22 09N-06E-22 AC- 09N-06E-22 BB-	09N-06E-22 BBC 09N-06E-23 AB- 09N-06E-26 CA- 09N-06E-27 ACB 09N-06E-27 BB- 09N-06E-27 CC-	09N-06E-28 C 09N-06E-28 DD- 09N-07E-03 CDB 09N-07E-09 BBA 09N-07E-20 DDB	09N-08E-15 BBA 09N-08E-34 CDD 10N-05E-01 CBB 10N-05E-13 CDD

TABLE 2.—Continued

Location	Well depth (ft)	Casing diameter (in.)	Use of water	Depth to water (ft)	Date measured	Well yield (gal/min)	Altitude (ft)	Specific conductance (µmho/cm)	Chemical analyses in table 4
				SEMINOLE CC	SEMINOLE COUNTYContinued	pə			
10N-05E-35 DDD 10N-06E-01 CCD	34 85	2 9	пн	29 21	1-70 1-75	1 1 1 1	1000 955	420	
10N-06E-13 CCD 10N-06E-17 ADD 10N-06E-32 DDD 10N-06E-34 AAD	150 25 60	0 0 0 0	ноон	41 9 27 120	1-75 1-70 1-70 1-75		975 915 1025 1065	890 269 269 725	×
	78 42	9 8	шш	19	1-75 5-70	; 1 ; ;	905 995	340 166	×
10N-07E-27 CDD 10N-08E-05 BBB 10N-08E-16 CCC 10N-08E-18 BBB 10N-08E-27 AAB 11N-05E-24 DCC	113 85 85 58 46 66 150	0 N 0 0 0 0	D E D E E	25 22 26 21 48 17	12-71 5-70 5-70 5-70 5-70 4-70 1-75		1000		
11N-05E-35 DCC 11N-05E-36 BBB 11N-05E-36 DDD 11N-06E-34 BCC 11N-06E-33 CCD	175 88 280 198 100 116	000000	# D#0##	75 37 81 41 61	1-75 1-70 1-75 1-75 1-75		980 985 928 965	840 960 751 575 815	×
11N-07E-13 CBB 11N-07E-31 CBB 11N-07E-32 BAA 11N-07E-35 AAC 11N-08E-09 AAA 11N-08E-16 DDC	112 81 179 152 32 60 82	1000000	довин . н	95 47 72 15 20 31	1-75 5-70 1-75 1-70 1-70 5-70		935 985 9985 9985 9985 9985 9985 9985 99	310 880 626 93 480	×

or continuous water-level measurements in selected wells and base-flow measurements of selected streams were made during the course of the study. Precipitation records were obtained from the National Weather Service. Analysis of these various data, in conjunction with necessary geologic information, provides a basis for describing the occurrence and movement of water within the aquifer and for estimating amounts of recharge, storage, and discharge.

Occurrence and Movement

Vertical and lateral variations in hydraulic characteristics of the Vamoosa-Ada aquifer, caused by variations in lithology, result in water occurring under unconfined, semiconfined, and confined conditions. Separation of the confined and unconfined parts of the aquifer, as shown on plate 2, is based on interpretation of about 600 geophysical logs. The interface between the unconfined and the confined zones is not sharply defined, as may be indicated by the maps, but probably is gradational through a zone where the water is semiconfined.

Unconfined conditions generally exist in the outcrop area of the aquifer and probably for a short distance westward from the point where it is overlain by less permeable rocks. Excluding some municipal and industrial wells, most wells completed in the Vamoosa—Ada aquifer penetrate only enough of the unconfined sandstone beds to obtain an adequate water supply. Measurements made in these wells were used to construct the water-table map (pl. 3, map A). Watertable contours, as shown on the map, were adjusted to fit the topography. A similar map for the confined part of the aquifer could not be prepared, because of lack of data.

In general, the regional slope of the water table is toward the east, similar to the eastward slope of the land surface. The principal component of ground-water movement is virtually lateral from areas of recharge to areas of discharge. As shown by the map, water levels are highest in the uplands between the streams. From these areas, the water moves toward the stream valleys, where it is discharged as springs or streamflow. This discharge maintains the flow of many streams during dry periods. Because water levels are close to the land surface in the stream valleys, most of the discharge by evapotranspiration takes place in these areas.

A secondary local component of ground-water movement is vertical—either downward or upward, depending on differences in hydraulic head. Measurements made in wells completed in the confined part of the aquifer at Seminole, Prague, Stroud, Cushing, and Drumright show that the confined hydraulic head ranges from about 70 to

150 ft below the unconfined hydraulic head as determined from the water-table map. Because of these hydraulic-head differences, water moves from the upper, unconfined part of the aquifer into the lower, confined part. Conversely, upward flow probably occurs where major streams, such as the Arkansas, North Canadian, and Canadian Rivers, are entrenched into the aquifer. This upward-moving water flows into the alluvium along the streams and eventually into the streams themselves during periods of low flow.

Movement of water in the deeper parts of the aquifer cannot be determined, because of lack of water-level data. Presumably, the regional direction of movement is toward the west, in the same direction as the regional dip of the aquifer.

Recharge

Most recharge to the Vamoosa-Ada aquifer is derived from precipitation falling directly on the outcrop area. Some recharge may occur where the aquifer is connected to the surface by sandstone beds in overlying rocks.

The base-flow of streams, that is, streamflow derived from ground water during dry periods, represents recharge that has entered the aquifer where it was temporarily stored until it was gradually discharged through springs and seeps. Thus, base-flow records and precipitation data can be used to obtain minimum estimates of recharge. To make such an estimate for the Vamoosa-Ada aquifer, base-flow measurements of Hilliby Creek in Okfuskee County and Polecat Creek in Creek County were used. The amounts of precipitation falling on the creek basins were obtained from the nearest climatological stations and were weighted to give average values. During 1975, precipitation on the two basins, which have a total area of 90 mi², amounted to approximately 190,000 acre-ft. During the same period, base flow from the two basins totaled about 7,300 acre-ft, or nearly 4 percent of the total precipitation. This value for recharge probably is small, because recharge to similar sandstone aquifers in western and central Oklahoma was estimated to be about 10 percent of the annual precipitation (Tanaka and Davis, 1963, p. 34; Carr and Marcher, 1977, p. 15). Nevertheless, the value of 4 percent amounts to about 93,000 acre-ft for the principal recharge area of the Vamoosa-Ada aquifer (about 1,090 mi²).

Potable Water in Storage

The map showing the thickness of the zone of potable water (pl. 3, map B) was prepared by contouring differences in altitude between the base of potable water (pl. 3, map C) and the water-

table surface of the unconfined part of the aquifer (pl. 3, map A). The map shows that the approximate maximum thickness of the potable-water zone decreases from 900 ft in the southern part of the area to 700 ft in the central part and to only 400 ft in the northern part. These changes in thickness largely reflect variations in the thickness of saturated sandstones, as shown by comparing the maps on plate 2 with map B on plate 3.

The volume of potable water stored in the Vamoosa–Ada aquifer can be estimated by multiplying the volume of the sandstone by its porosity. The volume of only the sandstone is considered, because even though the interbedded shale and siltstone contain large amounts of water, it is available only by very slow drainage during a long period of time. The total area of the aquifer, as considered in this report, is about 2,320 mi². Based on an average sandstone thickness of 200 ft and an average porosity of 0.20, as determined from neutron logs, the total amount of potable water stored in the aquifer is estimated at about 60 million acre-ft.

Porosity limits the amount of water that can be stored in an aquifer. Even with 100-percent water saturation, however, the aquifer will yield less than this limit, because some of the water is retained in the pores of the rock. Therefore, an estimate of the amount of water available from storage can be made by using specific yield, which is the ratio of the volume of water that a rock, after being saturated, will yield by gravity to the volume of the rock. Although no direct determinations of the specific yield for the Vamoosa-Ada aquifer have been made, a value of 0.12 was estimated by comparing the lithology and porosity of the aquifer with similar sandstones for which specific yields have been determined (Johnson, 1967). Using this value, the amount of potable water theoretically available from storage is estimated at 36 million acre-ft.

Changes in storage reflect a net difference in water movement, either natural or man-made, into or out of the aquifer. A regional loss or gain in storage would be indicated by a lowering or rising of the water level over a broad area. Water-level hydrographs (fig. 2) of three widely spaced wells in the Vamoosa-Ada aquifer show that the general trend of water levels for the periods of record is upward, indicating a regional increase in storage. Based on a specific yield of 0.12 and an average rise in water level of 4 ft throughout the outcrop area of 1,090 mi², an estimated gain of 335,000 acre-ft of available water was added to the aquifer between 1971 and 1975.

Discharge

Water is discharged from the Vamoosa-Ada aquifer by evapotranspiration, streamflow, and

pumping; of these losses, evapotranspiration is by far the largest. An estimate of evapotranspiration was obtained by use of the formula ET=KF, where ET= evapotranspiration, K= empirical coefficient depending on crop type and modified by vegetation factors, and F= the sum of the monthly consumptive use factors for the period. The consumptive use factor for each month is computed as the product of the mean monthly temperature and monthly percentage of daytime hours of the year (Blaney and Criddle, 1962, p. 43).

A value of 0.7 was used for K throughout the study area. Vegetation-density factors ranged from 0.7 to 0.9. In order to compute ET, data were obtained from five climatological stations. The results of the computations for 1975, as given below, show that evapotranspiration accounted for about 85 percent of the total precipitation during the year.

Station	Precipitation (inches)	Evapotranspiration (inches)	Percent
Seminole	42.1	37.9	90
Bristow	39.6	37.0	93
Cushing	40.9	34.0	83
Cleveland	38.4	32.4	84
Pawhuska	39.0	30.7	79

Because evapotranspiration accounts for such a large percentage of the water discharged, monthly values were determined for each of the five stations. The average of these values, in inches, for all five stations is given below:

Jan.	1.6	May	3.8	Sept.	3.2
Feb.	1.4	June	4.2	Oct.	2.8
Mar.	2.2	July	4.4	Nov.	1.9
Apr.	3.0	Aug.	4.2	Dec.	1.6

Discharge from the aquifer by streamflow was estimated from base-flow measurements of Hilliby and Polecat Creeks. During 1975, the yearly base-flow discharge for Hilliby Creek was 3,160 acre-ft and for Polecat Creek 4,115 acre-ft, for a total of 7,275 acre-ft. The total area of the two basins is approximately 90 mi²; hence, base-flow discharge from both was about 80 acre-ft/mi². Applying this value to the outcrop area of 1,090 mi² for the Vamoosa–Ada aquifer, the total amount of ground water discharged by streamflow amounted to about 87,000 acre-ft during 1975.

Total yearly discharge from the aquifer by pumping is based on city pumping records, records obtained from rural water districts, and estimates of rural population based on 1972 census figures. Water withdrawal from the Vamoosa-Ada

Figure 2. Water-level hydrographs for wells in the Vamoosa-Ada aquifer and monthly precipitation at nearby stations.

	a Number of wells used		!	e	8	6	14	ł	1
	Per capita use (gallons	per day)	180	28	164	106	114	84	24
	Total water use	(acre-ft)	1519.3	238.6	503.2	255.3	1281.0	235.1	9.99
		Dec.	125.0	8.6	35.6	15.4	108.1	18.4	5.7
		Nov:	128.9	23.5	38.0	14.7	105.1	18.5	5.5
g 1975		Oct.	129.2	9.1	41.7	19.1	114.2	20.4	5.7
DURIN		Sept.	145.8	34.5	46.4	22.1	116.4	18.7	5,6
R USE		Aug.	150.6	34.6	52.5	23.3	134.7	22.9	5.8
, WATE	use	July	158.9	35.9	48.4	30.0	128.3	26.4	5.6
NICIPAL	Monthly water use (acre-ft)	June	156.6	61.5	47.5	21.2	105.8	20.4	5.0
Table 3.—Municipal Water Use During 1975	Month (May	133.4	30.9	38.3	17.8	101.9	18.6	5.8
ABLE 3		Apr.	93.7	1	35.5	16.8	0.96	19.4	5.6
L		Mar.	104.7	ł	36.0	16.8	93.0	17.5	5.8
		Feb.	100.5 92.0	1	37.4	14.6	85.1	15.2	5.3
		Jan.	100.5	1	45.0	13.5	92.4	18.7	5.2
	City and source of water		Cushing: Surface water	Well	Drumright: Well water	Prague: Well water	Seminole: Well water	Stroud: Surface water	Well

aquifer for 1975, in acre-feet, is summarized below:

County	Rural use	Municipal use	Total
Creek	250	660	910
Lincoln	90	290	380
Okfuskee	70	120	190
Osage	280	315	595
Pawnee	60	65	125
Payne	50	240	290
Pottawatomie	40	120	160
Seminole	350	1,540	1,890
Totals:	1,190	3,350	4,540

Fewer than 200 acres of crops are irrigated; thus, ground-water withdrawals for irrigation are insignificant.

Major towns in the study area that rely, entirely or in part, on ground water for municipal supply include Cushing, Drumright, Prague, Seminole, and Stroud. Water-use data for these towns are shown in table 3.

GENERAL HYDROLOGIC BUDGET

A hydrologic budget is a semiquantitative accounting of the balance between total water

gains and losses for a given area for a given period of time, as calculated by:

$$Pc = Rc + Rn + ET \tag{1}$$

where

Pc = precipitation, in inches;

Rc = recharge, in inches;

Rn = runoff, in inches; and

ET =evapotranspiration, in inches.

Runoff was estimated using the following relationship:

$$Rn = Pc - (Rc + ET). (2)$$

Estimates of recharge (Rc) and evapotranspiration (ET) were given in the preceding section of this report. Based on these data, the estimated annual water budget for 1975 at five climatological stations is as follows, with all values in inches:

Station	Pc	Rc	Rn	ET
Bristow	39.6	1.6	1.0	37.0
Cleveland	38.4	1.5	4.5	32.4
Cushing	40.9	1.6	5.3	34.0
Pawhuska	39.0	1.6	6.7	30.7
Seminole	42.1	1.7	2.5	37.9

•				
	•			
		•	•	

CHEMICAL QUALITY OF WATER

MELVIN V. MARCHER¹

As stated earlier, one purpose of this report is to provide a general evaluation of the chemical quality of water from the Vamoosa-Ada aquifer. This evaluation is based on laboratory and on-site data. Laboratory data include (1) analyses of water from 88 wells (table 4) to determine concentrations of common constituents (calcium, magnesium, sodium plus potassium, bicarbonate, sulfate, chloride, and dissolved solids); and (2) analyses of water from 37 wells (table 4) and 12 stream sites (table 5) to determine concentrations of bromide as an indicator of mineralization by brines. On-site data include determinations of specific conductance of water from 212 wells (table 2) and 199 stream sites (table 5).

All natural waters contain mineral constituents dissolved from the rocks and soils with which they have been in contact. The concentration of dissolved constituents depends primarily on the type of soil or rock, to some extent the length of contact time, and pressure and temperature conditions. In addition to these natural conditions, man's activities, such as disposal of sewage and industrial wastes, diversion and use of the water, and activities associated with oil production, locally can have a significant effect on the chemical quality of the water.

Base of Potable Water

Delineation of the base of potable water, as shown by plate 3, map C, was determined from geophysical logs of approximately 500 oil and gas tests (1950 to 1972). For purposes of this report, the base of potable water is the base of the deepest zone containing water with a concentration of about 1,500 mg/L of dissolved solids. This concentration is used because it is the approximate maximum limit of dissolved solids the water can contain and still be considered potable or suitable for drinking (Kelly, 1962). The position of the base of potable water is significant, because wells that are completed below the base will

yield water that is unsuitable for drinking and for some other uses. In addition, local overpumping of wells that are completed to near the base may induce upward movement of more-mineralized water into the potable-water zone.

Within the study area, the contact between the base of potable water and the underlying non-potable water generally is rather abrupt; locally, however, the change occurs within a vertical distance of several tens of feet. Altitudes of the base range from near sea level in the southern part of the study area to about 900 ft above sea level in the northern part. These variations in altitude primarily reflect differences in rock permeability, although local geologic or hydrologic conditions are significant. The depth to the base of potable water at a particular locality can be estimated by comparing the altitude of the land surface determined from topographic maps with the altitude of the base of potable water.

Water Types

Examination of the data in table 4 shows that the type of water in the Vamoosa—Ada aquifer is variable. Of the 55 analyses that are complete enough to classify the water, about 75 percent are sodium bicarbonate or sodium calcium bicarbonate types. The remaining 25 percent are sodium sulfate, calcium sulfate, sodium chloride, or indeterminate types.

Water type is affected by depth, because concentrations of chemical constituents generally change with depth. The relationship between well depths and concentrations of selected chemical constituents is given in table 6. Comparison of mean values of each constituent at different depths shows that calcium and magnesium decrease with depth; sodium, bicarbonate, sulfate, and dissolved solids increase with depth; and chloride remains nearly constant. Dissolved solids, which is an index of the amount of total mineralization, exceeded 1,000 mg/L in 15 of 78 samples, or about 20 percent; of these, 8 samples were from wells 300 or more feet deep. Concentrations of chloride, which may indicate invasion of part of the aquifer by brines, exceeded 250 mg/ L in 8 of 83 samples, or about 10 percent.

¹ Chief, Hydrologic Studies Section, U.S. Geological Survey, Water Resources Division, Oklahoma City, Oklahoma.

TABLE 4.—CHEMICAL ANALYSES OF WATER FROM WELLS IN THE VAMOOSA-ADA AQUIFER

26

	Date	We11			Sodium	Bicart					Specific
Location	sample collected	Depth (feet)	Calcium (Ca)	Magnesium (Mg)	potassium (Na+K)	bonate (HCO ₃)	Sulfate (SO,)	Chloride (Cl)	Dissolved solids	Bromide (Br)	conduc- tance
05N-05E-25 DAD	11-1974	236	76	22	180	426	180	79	788	0.2	1220
	11-1974	321	8.1	3.6	280	281	110	210	785	.7	1340
07N-06E-33 BDD	11-1974	126+	99	59	67	502	52	98	652	9.	1110
	11-1974	668 668	2.0	0.8	520	366 895	190	100	<u> </u>		2090
08N-06E-10 BBC	3-1964	178	12	35	390	452	21.5	320	1300	į	2086
08N-06E-14 DCC	11-1974	200	280	150	950	324	21	2300	4500	8.2	6750
	11-1974	200	2.9	1.7	160	349	29	14	408	.1	674
	12-1975	500	9.0	2.0	160	346	32	16	406	٠. c	650
U8N-U6E-Z1 DAA	11-19/4) 65 165	1.,	2.	190	954	18 11	2.6	226	٠.	0//
	11-1974	009	48	21	8.3	232	14	8.4	. 221	· •	430
08N-07E-31 BAB	4-1971	50	i	;	20	186	21	80	194	;	352
09N-05E-04 DCC	6-1975	248	;	1	1	202	210	7.1	ł	۳.	5720
09N-05E-15 DDD	12-1974	112	!	!	!	!	1	62	2020	.2	2600
	12-1974	753	186	33	79	132	109	25	1080	}	1360
09N-06E-20 ABD 09N-06E-26 CA-	12-1975 $9-1947$	816 450	25 146	5.7	86 356	208 135	48 796	6.5	343 1540	o. !	490 2260
	701 61		Ξ	7	v.		0	и 1	37	c	117
	5-1970	120	+ I	, ,	, c	142	1.5	. o	165	. !	275
	1-1975	189	;	1	· ·	370	85	210	1	1.0	1380
	1-1970	25	1	!	11	154	4.8	8	197	1	269
10N-07E-18 BCC	5-1970	42	1	}	11	20	24	13	113	!	166
11N-06E-06 CCC	3-1971	220	}	1	80	450	28	34	502	1	872
11N-06E-34 BCC	8-1970	198	ţ	t I	134	248	163	11	478	ł	751
11N-07E-35 AAC	5-1970	152	!	1	45	324	57	14	374	1	626
12N-06E-28 DAD	5-1975	412	160	54	160	253	470	200	1260	5.	1810
	1-1971	105	!	¦	10	432	16	61	386	1	708
	4-1971	131	1		12	242	δ ;	10	222	1	413
13N-08E-08 DAA	2-1970	32	¦	1	6.7	89	16	6	102	1	172

896 251 720 365 426 790	3600 110 536 575 3680 644	244 382 51 864 1950 654	546 218 1300 733 648 376	126 1530 208 2880 369 1650	1030 1170 256 591 1360 999	708 770 740
::: 5	7.7	2 4 1	?	2 1 1 1 1 1 1 1 1 1		111
486 146 455 201 243 478	2510 77 324 370 2740 388	134 235 608 1570 405	340 142 595 480 358 207	88 960 132 2220 239 1200	676 744 192 382 998 712	757 997 708
100 30 12 6.9 7	1300 9 16 6.5 23 45	13 7.0 11 27 670 16	12 8.6 49 52 13	8.6 140 5.4 270 110 80	220 150 7.8 90 360 68	31 25 16
7 15 93 2.8 11	20 11 24 98 1660 28	14 4.4 16 50 110 79	63 22 180 110 30	17 180 13 970 12 450	66 250 13 91 58 60	28 38 59
374 76 335 217 254 332	122 46 306 222 302	108 240 76 259 200 273	256 92 266 266 390 323	12 486 76 413 24 487	44 140 108 72 50 372	376 416 386
25 30 140 13 100	350 4.9 26 90 757 110	17 25 8.8 35 180 140	66 190 29 25 17	11 130 23 110 34 74	81 150 13 32 102 64	72 180 140
 5 115 28	100	 8.5 8.2 1.2	1.9	3.1 72 4.6 130 		138
23 23 12 	330 37 80	 19 89 170 11	119	7 110 14 390 	30	22
153 55 408 149 185	97 117 99 697 357 487	130 136 121 30 160 538	490 77 600 124 230 120	194 180 67 90 28	20 80 42 85 85 21	100 200 87
4-1971 11-1970 7-1975 10-1974 6-1971 2-1975	3-1975 6-1971 6-1971 10-1975 7-1952	4-1971 6-1971 1-1975 8-1973 4-1975 10-1975	7-1971 12-1971 4-1975 6-1971 6-1971 11-1972	1-1975 2-1973 2-1973 4-1975 8-1971 4-1975	8-1971 8-1971 7-1973 8-1971 8-1971	8–1971 1–1973 1–1973
14N-07E-10 CBB 14N-08E-04 AAC 15N-06E-28 DBD 15N-07E-25 CCC 15N-08E-06 CDB 16N-05E-23 DDD	16N-06E-23 BBB 16N-07E-21 ADA 16N-07E-33 DDA 17N-05E-03 ACB 17N-05E-23 B 17N-07E-08 CCA	17N-07E-25 ADD 17N-08E-08 ACC 17N-08E-35 BDA 18N-06E-16 DDD 18N-06E-31 BCB 18N-06E-36 DAD	18N-06E-36 DDD 18N-07E-13 AAD 18N-07E-16 BAD 18N-07E-20 A 18N-07E-35 DDA 18N-08E-18 BCC	18N-08E-33 DDD 19N-07E-03 CDD 19N-08E-04 DCC 20N-07E-01 DAD 20N-08E-05 DDA 20N-08E-06 CCC	20N-08E-09 DCD 20N-08E-17 AAD 21N-07E-11 CAA 21N-08E-20 DCA 21N-08E-29 AAD 22N-07E-16 BBD	22N-08E-33 BAA 22N-09E-17 CCC 23N-07E-09 BDA

Table 4.—Continued

Specific de conduc- tance	2995 1010 862	1060 406 978 1090 291 2695	1120 4000 1010 2070 893 394	1210 922 890
Bromide (Br)	3.3	. 1	1	1.8 .8
Dissolved	1410 708 560	627 250 582 658 199 1490	674 2290 637 1140 542 235	1030 568 533
Chloride (C1)	570 190 28	53 11 43 110 39	18 200 110 440 56	45 120 120
Sulfate (SO ₄)	120 110 120	54 37 86 150 7.6	94 860 40 200 63	280 36 34
Bicar- bonate (HCO ₃)	176 205 388	420 192 480 262 37 447	590 560 378 411 386 158	336 317 304
Sodium plus potassium (Na+K)	140 77 40	240 53 160 67 19	270 860 19 440 210	150 25 24
Magnesium (Mg)	57 60 	3.1 28 34 7.8 2.8	1.2 3.4 1.8 2 2 .1	31 14 14
Calcium (Ca)	220 87 	5.1 33 120 19	4 8.1 8.7 4.7 1.8	99 140 140
Well Depth (feet)	350 187 25	260 325 240 255 109	125 900 300 500 160	90 65
Date sample collected	4-1975 4-1975 8-1971	4-1975 8-1971 11-1972 2-1973 4-1973 3-1975	2-1973 3-1975 4-1973 3-1975 3-1975 1-1973	3-1975 11-1973 1-1974
Location	23N-08E-07 DCC 23N-09E-25 BCC 24N-08E-33 CCA	24N-09E-03 DAA 24N-09E-20 ABB 25N-09E-24 BAD 25N-09E-35 BAD 26N-09E-14 ACB 26N-10E-09 ADA	27N-09E-27 ACC 28N-07E-29 DDA 28N-08E-03 AAA 28N-08E-08 DDA 28N-09E-15 DAC 28N-10E-33 ADA	29N-09E-23 CDA 29N-10E-29 BDC 29N-10E-29 BDC

Table 5.—Specific-Conductance, Discharge, and Bromide Data for Streams Draining The Vamoosa—Ada Aquifer

[Br = bromide. Units of measurement: Specific conductance, μ mho/cm (micromhos per centimeter at 25° Celsius; estimated flow, ft³/s (cubic foot per second); and bromide, mg/L (milligram per liter)]

Site location	Name	Specific conductance (µmho/cm)	Date measured	Estimated flow (ft ³ /s)	Remarks
CREEK COUNTY					
14N-07E-01 DDD	Salt Creek	920	2-12-75	25	
14N-07E-01 DDD	Salt Creek	2800	10-13-76	0.1	Oil on water
14N-08E-31 BBC	Deep Fork Creek	520	8-22-75		
14N-08E-06 DCD	Tributary of Salt Creek	470	2-12-75	4	
14N-08E-24 ABC	Deep Fork of Canadian River	1320	10-13-76	75	Oil on water
14N-09E-08 AA	West Fork of Sandy Creek	1300	10-13-76	0.1	Oil on water
15N-07E-15 BCC	Tributary of Camp Creek	1360	8-20-75	0.1	OIL ON WALEL
15N-07E-21 CDD	Camp Creek	705	8-22-75	4	
15N-07E-26 CCD	Tributary of Salt Creek	215	8-22-75	i	
15N-07E-27 ABB	Tributary of Salt Creek	535	2-12-75	ī	
15N-07E-28 CB	Tributary of Salt Creek	3200	10-13-76	0.1	0:1 0:
15N-07E-31 BBA	Tributary of Salt Creek	515	2-12-75	1	Oil on water
15N-07E-33 AAA	Salt Creek	2750	10-13-76	0.1	0.11
15N-07E-33 AAD	Tributary of Salt Creek	650	2-12-75	1	Oil on water
15N-07E-35 BAB	Tributary of Salt Creek	195	2-12-75	1	
15N-07E-36 BAB	Tributary of Salt Creek	260	0 10 75		
16N-07E-04 AAB	West Spring Creek	260 7900	2-12-75	1	
16N-07E-04 AAB	West Spring Creek	2600	2-13-75 8-19-75	5 4	
16N-07E 14 AAB	East Spring Creek	925	2-12-75	8	
16N-07E-14 AAB	East Spring Creek	770	8-19-75	4	
16N-07E-27 DDA	Little Deep Fork Creek	225	0 00 75		
16N-07E-28 ADA	•	225	8-20-75	6	
16N-08E-04 BCB	Little Deep Fork Creek	260	8-20-75	3	
16N-08E-11 CCC	Tributary of Catfish Creek Little Catfish Creek	1490	8-18-75	,	
16N-08E-22 BBC	Catfish Creek	250 3250	8-18-75	4	0.11
1011-001-22 1110	Catifish Greek	3230	10-13-76	0.2	Oil on water
17N-07E-02 CAD	Tributary of Tiger Creek	15000	10-13-76	0.1	Oil on water
17N-07E-03 BDA	Tributary of Tiger Creek	20000	10-13-76	0.1	Oil on water
16N-09E-08 CCC	Tributary of Sand Creek	4000	8-18-75	1	
17N-07E-04 ABA	Tributary of Tiger Creek	17500	10-13-76	0.2	Oil on water
17N-07E-04 AAD	Tributary of Tiger Creek	8500	10-13-76	0.1	Oil on water
17N-07E-03 BDB	Tributary of Tiger Creek	4600	8-19-75	6	
17N-07E-16 CC	Tributary of Tiger Creek	1120	8-19-75	0.3	
17N-07E-23	Spring Creek	5100	8-19 - 75	0.2	Creek flows through oil field
17N-07E-26 AAB 17N-07E-31 DAA	Spring Creek Tributary of Little Deep	16000	8-21-75		oii iteid
	Fork Creek	705	2 - 13-75		
17N-07E-31 DAA	Tributary of Little Deep				
	Fork Creek	220	8-19-75	0.2	
17N-07E-33 AAC	Tributary of West Spring Creek		8-20-75	1	Creek flows through oil field
17N-08E-10 D	Dog Creek	790	8-18-75	1	011 11610
17N-08E-17 DCC	Tributary of Dog Creek	500	2-13-75	2	
17N-08E-17 DCC	Tributary of Dog Creek	550	8-20-75	0.2	

 ${\tt Table \ 5.} \color{red} \color{red} - Continued$

Site location	Name	Specific conductance (µmho/cm)	Date mea s ured	Estimated flow (ft ³ /s)	Remarks
CREEK COUNTYCon	tinued				
17N-09E-07 BCC	Polecat Creek	490	10-13-76	0.5	
17N-09E-16 BCB	Mosquito Creek	730	8-18-75	1.5	
17N-09E-30 BDC	Mosquito Creek	1300	10-13-76	0.5	Oil on water
18N-07E-03 CDD 18N-07E-29 BCD	Dry Creek Tiger Creek	3100 4180	8-20-75 10 - 13-76	1 1.5	Br = 3.8 mg/ Oil on water
10V 07D 22 D00	_	11/00	10 12 76	0.3	041 on maken
18N-07E-33 BCC	Tributary of Tiger Creek	11400 14000	10-13-76 10-13-76	0.3 0.2	Oil on water Oil on water
18N-07E-33 DCC 18N-08E-06 CDC	Tributary of Tiger Creek Buckeye Creek	260	8-19-75	4	OII ON Water
18N-08E-06 CDC	Buckeye Creek	420	10-13-76	i	
18N-08E-18 CDD	Buckeye Creek	270	8-10-75	-	Not base flo
18N-08E-18 CDD	Buckeye Creek	275	10-13-76	1	
18N-08E-26 DDD	Deep Creek	220	8-18-75	2	
18N-08E-33 AAD	Polecat Creek	310	8-19-75	5	
18N-08E-33 AAA	Tributary of Polecat Creek	220	10-13-76	1	
18N-08E-36 DDD	Figure Eight Creek	250	8-18-75	0.8	
18N-09E-19 DDC	Figure Eight Creek	160	10-13-76	0.2	
19N-07E-35 BAA	Dry Creek	1450	8-20-75	2	
19N-07E-36 AAA	Buckeye Creek	500	10-13-76	2	
19N-08E-32 AAB	Sand Creek	330	8-20-75	0.8	
19N-08E-34 BAA 19N-08E-36 BAB	Rock Canyon Creek Cottonwood Creek	230 470	8-20-75 8-19-75	2 1.5	
LINCOLN COUNTY					
12N-06E-03 BAB	Deer Creek	900	2-14-75	1 5	
12N-06E-03 BAB	Deer Creek Deer Creek	340	8-18-75	1.5 0.4	
12N-06E-10 CDD 13N-06E-04 CDD	Deer Creek Deer Creek	610 940	8-18-75 2-14-75	0.4	
13N-06E-09 CCC	Deer Creek	730	8-18-75	6	
13N-06E-11 ABB	Barby Creek	1090	2-17-75		
13N-06E-21 ABA	Deer Creek	995	1-30-75		
14N-06E-03 DDC	Tributary of Deep Fork				
14-N-06E-03 DCD	of Canadian River	4600	2-12-75		
14-N-00E-03 DCD	Tributary of Deep Fork of Canadian River	1120	1-30-75		
14N-06E-15 CBB	Deep Fork of Canadian River	435	8-19-75		
14N-06E-34 AAB	Tributary of Deep Fork				
	of Canadian River	1300	8-19-75		Br = 2.2 mg/
					Oil lining creek bank
14N-06E-36 CDD	Barby Creek	535	2-12-75		223611 54111
14N-06E-36 CDD	Barby Creek	415	8-19-75		
15N-06E-22 BBB	Salt Creek	2200	8-19-75	4	
16N-05E-01 AAD	Tributary of Euchee Creek	330	8-19-75	5	
16N-05E-36 AAA	Fourmile Creek	1180	2-13-75		
16N-06E-06 CDD	Euchee Creek	1150	2-12-75		
16N-06E-06 CDD	Euchee Creek	210	8-19 - 75		
17N-06E-18 DCD	Euchee Creek	2600	2-13-75		
17N-06E-18 DCD	Euchee Creek	245	8-20-75	0.5	
17N-06E-19 CDC	Euchee Creek	220	8-20 - 75	0.5	

Table 5.—Continued

Site location	Name	Specific conductance (µmho/cm)	Date measured	Estimated flow (ft ³ /s)	Remarks
OKFUSKEE COUNTY					
11N-08E-13 ADD	North Canadian River	1850	10-12-76	80	
11N-08E-14 AAA	Tributary of North	22.0	10 10 76	•	
12N-07E-06 BBA	Canadian River Pettiquah Creek	220 270	10-12-76 8-18-75	1 3	
13N-07E-31	Pettiquah Creek	1190	1-30-75	3	
13N-07E-02 DDC	Hilliby Creek	625	8-22-75	1	
13N-08E-01 CCD	Wolf Creek	370	10-13-76	0.1	
13N-09E-06 AAD	Deep Fork of Canadian River	1220	10-13-76	70	
OSAGE COUNTY					
21N-10E-04 CDA	Tributary of Wildhorse Creek	100	10-14-76	0.1	
22N-09E-13 CDC	Boar Creek	480	10-14-76	2	
22N-10E-20 BDB	Wildhorse Creek	325	10-14-76	0.5	
22N-10E-21 AAC	Eagle Creek	2250	10-14-76	0.3	
22N-10E-29 CCD	Buck Creek	175	10-14-76	0.5	
22N-10E-32 DDD	Wildhorse Creek	270	10-14-76	0.3	
23N-08E-05 CBC	Rainbow Creek	8650	10-14-76	0.1	
23N-08E-35 CDA	Penn Creek	490	10-14-76	0.5	
23N-09E-27 ADD	Sunset Creek	280	10-14-76	1	
23N-09E-30 ADA	Tributary of Hominy Creek	2000	8-18-75		Not base flow
23N-09E-33 D	Tributary of Hominy Creek	320	10-14-76	1	
23N-09E-34 ADD	Mahala Creek	280	10-14-76	1	
23N-09E-36 DAB	Sand Creek	850	10-14-76	1	
23N-10E-34 CDC	Bull Creek	3750	10-14-76	0.2	
24N-07E-10 D	Hominy Creek	1380	8-18-75	4	
24N-07E-10 D	Hominy Creek	16000	10-14-76	0.2	
24N-07E-33 A	Tributary of Sycamore Creek	1900	8-18-75	1	Not base flow
24N-07E-33 C	Tributary of Sycamore Creek	890	8-18-75	5	
24N-08E-09 ADA	Little Hominy Creek	1340	10-14-76	0.1	
24N-08E-14 CAB	Little Hominy Creek	2400	8-18-75		
24N-08E-14 CAB	Little Hominy Creek	3500	10-14-76	2	
24N-08E-25 BA	Little Hominy Creek	18500	8-14-75	4	Br = 31.0 mg/1
24N-09E-32 DDA	Tributary of Twomile Creek	1600	10-14-76	0.1	_
24N-08E-36 BAA	Little Hominy Creek	2850	8-18-75	10	
24N-10E-01 DDA	Red Eagle Branch	430	10-14-76	0.2	
24N-10E-17 DAD	Birch Creek	1040	8-18-75		
24N-10E-17 DAD	Birch Creek	920	10-14-76	0.1	
24N-10E-30 CAA	Fourmile Creek	920	8-20-75		Not base flow
25N-08E-18 A	Tributary of Clear Creek	780	10-14-76	2	
25N-08E-19 CBB	Tributary of Little Hominy Creek	13000	8-18-75		Br = 18.0 mg/L
25N-08E-19 CDD	Tributary of Little				
	Hominy Creek	42000	8-19 - 75		Brine flowing into creek
25N-08E-23 BDD	Clear Creek	7200	8-19-75		from brine pit
25N-10E-16 CDD	Nelagoney Creek	250	8-20-75		Not base flow
25N-10E-18 BCC	Quapaw Creek	2650	8-20-75		Not base flow
25N-10E-20 DBB	Saucy Calf Creek	810	10-14-76	1	5436 110W
25N-10E-21 BCB	Buffalo Creek	480	3-26-75		

 ${\tt Table \, 5.--} Continued$

Site location	Name	Specific conductance (µmho/cm)	Date measured	Estimated flow (ft ³ /s)	Remarks
OSAGE COUNTYCon	<u>tinued</u>				
25N-10E-32 DDC	Tributary of Cochahee Creek	420	10-14-76	0.5	
26N-09E-12 AAD	Cedar Creek	640	8-20-75		
26N-10E-04 CAD	Rock Creek	600	8-20-75		
26N-10E-15 AAA	Sand Creek	700	8-20-75	11	
26N-10E-19 BDB	Sand Creek	420	8-20-75		
27N-10E-07 CB	Tributary of Rock Creek	340	8-21-75	0.4	
27N-10E-08 BDD	Tributary of Rock Creek	590	8-21-75	0.2	Oil on water
27N-10E-08 CDD	Rock Creek	260	8-21-75	0.2	
27N-10E-30 CBD	Elm Creek	340	8-21-75	0.4	
28N-08E-03 ABA	Buck Creek	220	3-06-75	0.0	
29N-08E-23 CBC	Smith Creek	420	8-21-75	0.2	
29N-08E-22 DAA	Smith Creek	350	3-06-75 8-21-75		Not base flow
29N-09E-13 DAB	Caney River	395	8-21-73		NOT base flow
29N-09E-23 DAC	Buck Creek	450	3-06-75		
29N-09E-23 DAC	Buck Creek	660	8-21-75		Not base flow
29N-10E-16 ABB	Coon Creek	400	3-06-75		
29N-10E-17 AAB	Cedar Creek	460	3-06-75		
29N-10E-17 DA	Caney River	120	3-26-75		
29N-11E-18 DDD	Tributary of Turkey Creek	2900	8-21-75	0.2	
29N-11E-18 DDD	Tributary of Turkey Creek	3500	10-14-76	0.5	Oil on water
29N-11E-30 AAB	Turkey Creek	1200	3-06-75	_	
29N-11E-30 AAB	Turkey Creek	4800	8-21-75	2	Br = 12.0 mg/I Oil on water
29N-11E-30 ABC	Turkey Creek	3500	10-14-76	0.1	OII ON Water
	·				
PAWNEE COUNTY					
20N-08E-02 DAD	Bear Creek	2300	8-21-75	1	
20N-08E-02 DAD	Bear Creek	1160	10-14-76	0.1	
20N-08E-06 DDD	Tributary of House Creek	4050	8-21-75	1	Br = 06.7 mg/l
20N-08E-13 BBA	Cowskin Creek	3100	8-21-75	0.1	
20N-08E-32 ABA	Tributary of House Creek	350	8-21-75	2	
21N-07E-21 BC	Turkey Creek	310	8-21-75		
21N-07E-21 BC	Turkey Creek	360	10-13-76	0.1	
21N-08E-17 BCB	Cedar Creek	4150	8-21-75	3	Br = 05.8 mg/
21N-08E-17 BCB	Cedar Creek	4650	10-13-76	0.5	Oil on water
PAYNE COUNTY					
17N-05E-15 CCC	Tributary of Cottonwood Creek	c 500	8-19-75	4	Creek flows
					through oil field
17N-05E-13 DAA	Cottonwood Creek	2 <u>.</u> 50	8–19–75	15	Creek flows through oil field, not base flow
POTTAWATOMIE COU	NTY				
11N-05E-11 DCC	Tributary of North				
11N 06P 16 4PP	Canadian River	620 590	8-19-75 8-19-75	0.1 0.2	
11N-06E-16 ABB	Shan Creek	390	0-19-/3	0.2	

 ${\tt TABLE~5.--} Continued$

Site location	Name	Specific conductance (µmho/cm)	Date measured	Estimated flow (ft ³ /s)	Remarks
SEMINOLE COUNTY					
05N-05E-11 A	Negro Creek	1160	10-11-76	0.2	
05N-06E-03 ABC	Jumper Creek	915	8-21-75	15	
05N-06E-03 ABC 05N-06E-19 ABD	Jumper Creek	1320	10-12-76	0.2	
UDN-UGE-19 ABD	Tributary of Canadian River	590	10-11-76	1.5	
05N-07E-23 AAA	Tributary of Canadian River	44000	10-12-76	> 0.05	Spring, dead foliage and trees around spring
05N-07E-26 AD	Tributary of Canadian River	10100	10-12-76	0.2	Flows through salt water injection area
06N-06E-33 B	Jumper Creek	1750	10-12-76	0.5	Oil residue on creek bed
06N-07E-08	Little River	1700	10-12-76	0.5	
06N-07E-19 AAD	Rock Creek	415	8-21-75	0.1	
06N-08E-30 BC	Little River	4200	10-12-76	4	
07N-06E-03 CBC	Little River	1800	10-12-76	0.1	
07N-06E-14 BCC	Tributary of Salt Creek	20000	2-13-75	0.1	
07N-06E-15 ADD	Tributary of Salt Creek	9200	2-13-75		
07N-06E-19 CDC	Mud Creek	1480	8-20-75	0.8	
07N-06E-27 CBC	Salt Creek	2920	8-20-75	8	
07N-06E-34 CCC	Sandy Creek	2950	8-20-75	0.2	
07N-07E-05 DBC	Tributary of Little River	7300	8-21-75		Salt water disposal pit in outcrop one-half mile south
07N-07E-08 DCD	Tributary of Little River	1500	8-21-75	0.2	
07N-07E-20 BBA	Little River	1320	8-20-75	25	
08N-06E-06	Tributary of Wewoka Creek	660	8-19-75	0.1	- 6 - 4-
08N-07E-07 CDD 08N-07E-07 CDD	Wewoka Creek Wewoka Creek	5800 1100	8-19-75 10-12-76	9 2	Br = 8.0 mg/L
08N-07E-07 CDD	weword creek	1100	10-12-76	2	
08N-07E-32 ADD	Tributary of Wewoka Creek	255	8-19-75		
09N-05E-13 DCD	Tributary of Wewoka Creek	15500	10-11-76	> 0.1	
09N-05E-15 BCD	Wewoka Creek	44000	8-21-75	0.1	Br = 83.0 mg/L Leaking injection well one- fourth mile south
09N-05E-23 BBB	Wewoka Creek	41000	8-19-75	0.2	Br = 83.0 mg/L Water clear, foams easily, oil sediment on streambed

Table 5.—Continued

Site location	Name	Specific conductance (µmho/cm)	Date measured	Estimated flow (ft ³ /s)	Remarks
SEMINOLE COUNTY	-Continued				
09N-05E-23 BBB	Wewoka Creek	18000	10-12-76	0.1	
09N-06E-14 CDD	Carter Creek	9800	8-18-75	0.3	Br = 18.0 mg/L
09N-06E-29 BAB	Tributary of Wewoka Creek	870	8-19-75	0.1	
09N-06E-30 AAB	Wewoka Creek	19000	8-19-75	0.1	Br = 33.0 mg/L
10N-06E-03 CCC	Turkey Creek	9250	2-13-75		
10N-06E-03 CCC	Turkey Creek	9250	8-18-75	0.3	Br = 14.0 mg/L
10N-06E-03 CCC	Turkey Creek	6600	10-12-76	1	
10N-06E-17 DCC	Turkey Creek	1100	10-12-76	> 0.1	
10N-07E-09 DAA	Snake Creek	800	2-13-75		
10N-07E-09 DAA	Snake Creek	510	8-18-75	0.8	
10N-07E-17 CDD	Snake Creek	875	8-18-75		

Variations in Chemical Quality

To determine variations in mineralization of water in the Vamoosa-Ada aquifer, specific-conductance measurements made at well or stream sites were used to compare and contrast ground and surface waters within and between basins. Specific conductance is used because it provides a rapid and simple means of estimating the total concentration of dissolved minerals in the water. The ratio of dissolved solids to specific conductance, as determined from data provided by analysis of 81 samples (table 4) from wells of various depths, ranged from 0.46 to 0.85 and averaged 0.63. Thus, by measuring the value of specific conductance of the water and multiplying by the average value of 0.63, an approximation of the dissolved-solids concentration is obtained. Specific-conductance measurements, however, cannot be used to identify individual anions or cations in the water.

During periods of base flow, when water in the streams is derived from ground water, the specific conductance of stream and ground waters in a given basin should be about the same, provided that minerals are not being added to the stream from an outside source. Specific conductance of water from wells in the Vamoosa–Ada aquifer, based on 212 measurements, ranged from 51 to 6,828 μmho (micromhos at 25° C); the median value was 729 μmho . Water from 23 wells, or about 11 percent of the total, exceeded 1,600

μmho, which is approximately equivalent to 1,000 mg/L dissolved solids. In comparison, specific conductance of stream water, based on measurements at 191 sites during periods of base flow, ranged from 100 to 44,000 μmho: the median value was 920 μmho. Water at 65 sites, or about 34 percent, had a specific conductance greater than 1,600 μmho.

Comparison of specific-conductance measurements of water from two basins in the outcrop area of the Vamoosa–Ada aquifer—Polecat and Wewoka Creeks—shows marked differences in the mineralization of the water. For example, the specific conductance of water from two tributaries of Polecat Creek (Dog Creek and a tributary of Dog Creek), Creek County, during base flow was 500 and 790 µmho, while specific conductance of ground water in the basin ranged from 380 to 555 µmho. In contrast, specific conductance of water from Wewoka Creek, Seminole County, and its tributaries ranged from 255 to 44,000 µmho and that of ground water in Wewoka Creek basin ranged from 430 to 6,750 µmho.

Because of the variations in specific conductance of water in Wewoka Creek, a series of measurements was made during a base-flow period in August 1975 to determine the entrance points of mineralized water into the creek; the data are presented in figure 3. The measurements show that specific conductance increased from 5,800 µmho near the mouth of the creek to 19,000 µmho about 8 mi upstream. From that point, specific

TABLE 6.—CONCENTRATIONS OF SELECTED CHEMICAL CONSTITUENTS IN RELATION TO WELL DEPTH

mean values]
mean
the
determine the n
to
nseq
nalyses
c of a
is number
is
arentheses
in pa
[Number

Well Depth (feet)		Calcium	Mangnesim	Sodium plus potassium	Bicarbonate	Sulfate	Chloride	Dissolved
66-0	Minimum Mean	14	4.6	5.2	20 131(22)	4.8	5.4	102
	Maximum	390	130	350	413	970	1,300	2,510
	Minimum	1.8	0.1	6.4	12	2.8	5	76
100-299	Mean	26(22)	16(22)	27 (36)	281 (39)	34 (38)	20(39)	437 (36)
	Maximum	170	82	009	290	049	670	2,020
	Minimum	1.7	0.2	8.3	132	14	6.5	221
300-900	Mean	23(19)	3.8(19)	150(22)	270(20)	96(22)	35(22)	616(20)
	Maximum	280	150	950	895	1,660	2,300	4,500
:	Minimum	1.7	0.1	6.4	12	2.8	'n	92
006-0	0-900 Mean	32(50)	14(50)	70(80)	259(81)	46(82)	27(83)	470(78)
	Maximum	390	150	950	895	1,660	2,300	4,500

conductance increased to 44,000 μmho near the headwaters of the creek; the discharge of the creek did not change significantly in the upstream reaches. These measurements show that mineralized water was entering the upstream reach of Wewoka Creek during August 1975. The specific conductance of 9,800 μmho for a south-flowing tributary, which enters about 3 mi upstream from the mouth of the creek, indicates that mineralized water also was being added upstream from this site.

Because much of the area of the Vamoosa-Ada aquifer has been the scene of oil production since the early 1900's, brines associated with pe-

troleum are a potential source of mineralization of the ground and surface waters. Brines associated with petroleum contain as much as 6,000 mg/L bromide (Collins, 1975, p. 163) and, as far as is known, are the only possible source of readily detectable (1 mg/L or more) bromide in the area. Accordingly, bromide concentrations were determined for water samples from 39 wells (table 4) and 13 stream sites (table 5) during the course of this study. Water samples from 32 of the wells had less than 1.0 mg/L bromide, and, of the remaining wells, the bromide content was 1 mg/L or more in seven. Water samples from the 13 stream sites had bromide concentrations ranging

Figure 3. Specific conductance of water measured in Wewoka Creek basin, August 1975.

from 2.2 to 83 mg/L. Information on bromide concentration in brines underlying the Vamoosa-Ada aquifer is not available, so the relation between relative concentrations of bromide in the brines and in the fresh water cannot be determined.

Although the available data indicate that mineralization of ground water by petroleum-associated brines has occurred in parts of the area, the data do not provide a basis for determining how such mineralization has taken place. Mineralization of surface water is more extensive than that of ground water. A source of this mineralization is readily available from the many areas, observable in the field, where petroleum-associated brines have been discharged onto the surface to penetrate the soil and then be washed into the streams by rainfall.

Trace Elements

Concentrations of some trace elements, as determined by the Oklahoma Department of Public Health, which are present in water from the Vamoosa-Ada aquifer used for municipal supply, are listed in table 7. None of the elements listed occurred in concentrations greater

than the mandatory limits established by the U.S. Environmental Protection Agency (1976).

OUTLOOK FOR THE FUTURE

This study shows that the Vamoosa-Ada aquifer is a potential source of large amounts of potable water. Compared with the estimated amounts of potable water available from storage (36 million acre-ft) and the annual recharge (93,000 acre-ft), the amount withdrawn annually (less than 5,000 acre-ft in 1975) is insignificant. If properly developed and managed, the aquifer should meet the area's water requirements into the foreseeable future. One problem in fully using the aquifer is that the areas most favorable for development—that is, where the saturated sandstone sequences are thickest-are not near the cities and towns where the water is needed. However, this is principally a problem of water distribution and not one of water availability.

Water from the Vamoosa—Ada aquifer generally is suitable for municipal, domestic, and stock supply. However, in some areas, dissolved minerals derived from brines associated with petroleum production are being added to the freshwater system.

TABLE 7.—TRACE ELEMENTS, IN MILLIGRAMS PER LITER, PRESENT IN MUNICIPAL WATER SUPPLIES

Element	Mandatory limit 1/	Cushing	Drumright	Prague	Seminole	Stroud
Arsenic	0.05	.001	.001	.003	.003	.003
Cadmium	0.010	.003		.001	.001	.002
Chromium	0.050	.017	.040	.022	.025	.029
Lead	0.050	.014	.011	.015	.005	.004
Mercury	0.002	.0005	.0005	.0004	.0005	.0004
Silver	0.05	0.001	0.001	0.002	0.001	0.001

 $[\]perp I$ U.S. Environmental Protection Agency (1976).

SELECTED REFERENCES

Back, William, 1961, Techniques for mapping of hydrochemical facies: U.S. Geological Survey Profes-

sional Paper 424-D, p. 380-382.

—— 1966, Hydrochemical facies and ground-water flow patterns in northern part of Atlantic coastal plain: U.S. Geological Survey Professional Paper 498-A, 42 p.

Beckwith, H. T., 1928, Oil and gas in Oklahoma; geology of Osage County: Oklahoma Geological Sur-

vey Bulletin 40-T, 63 p.

- Bentall, Ray, 1963, Methods of determining permeability, transmissibility and drawdown: U.S. Geological Survey Water-Supply Paper 1536-I, p. 243-341.
- Berryhill, R. A., 1961, Subsurface geology of south-central Pawnee County, Oklahoma: Shale Shaker, v. 12, no. 4, p. 2-18.
- Bingham, R. H., and Bergman, D. L., 1980, Reconnaissance of the water resources of the Enid quadrangle, central Oklahoma: Oklahoma Geological Survey Hydrologic Atlas 7, 4 maps, scale 1:250,000.
- Bingham, R. H., and Moore, R. L., 1975, Réconnaissance of the water resources of the Oklahoma City quadrangle, central Oklahoma: Oklahoma Geological Survey Hydrologic Atlas 4, 4 maps, scale 1:250,000.
- Blaney, H. F., and Criddle, W. D., 1962, Determining consumptive use and irrigation water requirements: U.S. Department of Agriculture Technical Bulletin 1275, 59 p.
- Branson, C. C., 1956, Pennsylvanian history of northeastern Oklahoma: Tulsa Geological Society Digest, v. 24, p. 83-86.
- Bredehoeft, J. D., Blyth, C. R., White, W. A., and Maxey, G. B., 1963, Possible mechanism for concentration of brines in subsurface formations: American Association of Petroleum Geologists Bulletin, v. 47, p. 257-269.
- Brensing, D. G., Oakes, Harvey, Scriven, David, Talley, E. C., Mikles, H. P., and Thorp, James, 1959, Soil Survey of Creek County, Oklahoma: U.S. Department of Agriculture, Soil Conservation Service, series 1950, no. 5, 43 p.
- Buckhannan, W. H., Bogard, V. A., Bush, H. H., Carson, A. D., Graham, E. O., Sparwasser, W. A., Walker, G. D., and Carter, W. T., 1952, Soil survey of Okfuskee County, Oklahoma: U.S. Department of Agriculture, Soil Conservation Service, series 1940, no. 7, 110 p.

Burwell, A. L., 1942, The possibility of magnesia from Oklahoma oil field brines: Oklahoma Geological

Survey Mineral Report 14, 28 p.

- Carr, J. E., and Marcher, M. V., 1977, A preliminary appraisal of the Garber-Wellington aquifer, southern Logan and northern Oklahoma Counties, Oklahoma: U.S. Geological Survey Open-File Report 77-278, 49 p.
- Chenoweth, P. A., 1959, Sources of the Vamoosa quartzite pebbles: Oklahoma Geology Notes, v. 19, p. 229-232.
- Collins, A. G., 1975, Geochemistry of oilfield waters: Elsevier Scientific Publishing Company, New York, 496 p.
- Collins, A. G., and Egleson, G. C., 1967, Iodide abundance in oilfield brines in Oklahoma: Science, v. 156, p. 934-935.

- Cutolo-Lozano, Francisco, 1969, Subsurface geology of the Seminole area, Seminole, Pottawatomie, and Okfuskee Counties, Oklahoma: Shale Shaker, v. 19, p. 118-130.
- DeSitter, L. U., 1947, Diagenesis of oil-field brines: American Association of Petroleum Geologists Bulletin, v. 31, p. 2030-2040.
- D'Lugosz, J. J., and McClaflin, R. G., 1977, Hydrologic data for the Vamoosa aquifer: U.S. Geological Survey Open-File Report 77-487, 38 p.
- Fambrough, J. W., 1963, Isopach and lithofacies study of Virgilian and Missourian series of north-central Oklahoma: Shale Shaker, v. 13, no. 5, p. 2–23, 26.
- Foley, L. L., 1926, The origin of the faults in Creek and Osage Counties, Oklahoma: American Association of Petroleum Geologists Bulletin, v. 10, p. 293–303.
- Fronjosa, Ernesto, 1965, A study of Oklahoma water flood statistics: Oklahoma University unpublished M.E. thesis, 87 p.
- Galloway, H. M., Templin, E. H., and Oakes, Harvey, 1959, Soil survey of Pawnee County, Oklahoma: U.S. Department of Agriculture, Soil Conservation Service, series 1952, no. 4, 71 p.
- Greig, P. B., 1959, Geology of Pawnee County, Oklahoma: Oklahoma Geological Survey Bulletin 83, 188 n.
- Hart, D. L., Jr., 1974, Reconnaissance of the water resources of the Ardmore and Sherman quadrangles, southern Oklahoma: Oklahoma Geological Survey Hydrologic Atlas 3, 4 maps, scale 1:250,000.
- Ickes, E. L., 1926, Discussion; origin of the faults in Creek and Osage Counties, Oklahoma: American Association of Petroleum Geologists Bulletin, vol. 10, no. 7, p. 727-729.
- Johnson, A. I., 1967, Specific yield compilation of specific yields for various materials: U.S. Geological Survey Water-Supply Paper 1662-D, 74 p.
- Johnson, K. S., Branson, C. C., Curtis, N. M., Jr., Ham,
 W. E., Marcher, M. V., and Roberts, J. F., 1972,
 Geology and earth resources of Oklahoma: Oklahoma Geological Survey Educational Publication
 1 8 p.
- Kelly, S. F., 1962, Geophysical exploration for water by electrical resistivity: New England Water Works Association Journal, v. 76, p. 118–189.
- Kirk, M. S., 1957, A subsurface section from Osage County to Okfuskee County, Oklahoma: Shale Shaker, v. 7, no. 6, p. 2-4, 9-21.
- Koschmann, A. H., 1928, Oil and gas in Oklahoma; geology of Payne County: Oklahoma Geological Survey Bulletin 40-X, 13 p.
- Kramer, William, 1934, En echelon faults in Oklahoma: American Association of Petroleum Geologists Bulletin, v. 18, p. 243-250.
- Leonard, A. R., and Ward, P. E., 1962, Use of Na/Cl ratios to distinguish oil-field from salt-spring brines in western Oklahoma: U.S. Geological Survey Professional Paper 450-B, p. 126-127.
- Levorsen, A. I., 1928, Oil and gas in Oklahoma; geology of Seminole County: Oklahoma Geological Survey Bulletin 40-BB, 70 p.
- Lohman, S. W., 1972, Ground-water hydraulics: U.S. Geological Survey Professional Paper 708, 70 p.
- Marsh, John, 1966, Ground water versus surface water: Johnson Drillers Journal, Sept.-Oct. 1966, p. 1-5.

Masters, K. E., 1957, Geology of the Prague area, Lincoln and Pottawatomie Counties, Oklahoma: Shale

Shaker Digest II, p. 227-234.

Morganelli, Daniel, 1972, Depositional environment and trend of the uppermost part of the Vamoosa Formation and Lecompton Limestone in the eastern part of north-central Oklahoma: Oklahoma State University unpublished M.S. thesis, 68 p.

National Academy of Sciences, National Academy of Engineering, 1972 [1974], Water quality criteria, 1972: U.S. Government Printing Office, 594 p.

- Oakes, M. C., 1959, Geology and mineral resources of Creek County, Oklahoma: Oklahoma Geological Survey Bulletin 81, 134 p.
- Oklahoma Water Resources Board, 1971a, Appraisal of the water and related land resources of Oklahoma, region 8: Oklahoma Water Resources Board Publication 34, 141 p.

- ——— 1972, Appraisal of the water and related land resources of Oklahoma, region 10: Oklahoma Water Resources Board Publication 40, 137 p.
- Petroleum Information, 1973, Analysis of available data on secondary recovery in Oklahoma: Tulsa, Oklahoma, 337 p.
- Pettyjohn, W. A., 1976, Monitoring cyclic fluctuations in ground-water quality: Ground Water, v. 14, p. 472-480.
- Powell, W. J., Carroon, L. E., and Avrett, J. R., 1963, Water problems associated with oil production in Alabama: Alabama Geological Survey Circular 22, 63 p.
- Powers, Sidney, 1927, The Seminole uplift, Oklahoma: American Association of Petroleum Geologists Bulletin, v. 11, p. 1097-1108.
- Puzin, L. A., 1951, A chart of connate water resistivity in Oklahoma and its application to electric log interpretation: Petroleum Engineering, v. 24, no. 9, p. B67-B78.
- Revelle, Roger, 1941, Criteria for recognition of sea water in ground-waters: American Geophysical Union Transactions, v. 22, p. 593-597.

- Ries, E. R., 1954, Geology and mineral resources of Okfuskee County, Oklahoma: Oklahoma Geological Survey Bulletin 71, 120 p.
- Shelton, J. W., and Rowland, T. L., 1974, Guidebook to the depositional environments of selected Pennsylvanian sandstones and carbonates of Oklahoma: Geological Society of America, South-Central Section, Fieldtrip Guidebook 3, 75 p.

Sherrill, R. E., 1929, Origin of the en échelon faults in north-central Oklahoma: American Association of Petroleum Geologists Bulletin, v. 13, p. 31-37.

- Tanaka, H. H., and Davis, L. V., 1963, Ground-water resources of the Rush Springs Sandstone in the Caddo County area, Oklahoma: Oklahoma Geological Survey Circular 61, 63 p.
- Tanner, W. F., 1956a, Geology of northeastern Osage County, Oklahoma: Oklahoma Geological Survey Circular 40, 76 p.

——— 1956b, Geology of Seminole County, Oklahoma: Oklahoma Geological Survey Bulletin 74, 175 p.

- Terrell, D. M., 1972, Trend and genesis of the Pennsylvanian Elgin Sandstone in the western part of the northeastern Oklahoma: Oklahoma State University unpublished M.S. thesis, 79 p.
- U.S. Environmental Protection Agency, 1976, National interim primary drinking water regulation: U.S. Environmental Protection Agency EPA-580/9-76-003, 159 p.
- Van Baxel, C. H., 1966, Potential evaporation; the combination concept and its experimental verification: Water Resources Research, v. 3, p. 455-467.
- Visher, G. S., 1964, Fluvial processes as interpreted from ancient and recent fluvial deposits: American Association of Petroleum Geologists Bulletin, v. 48, p. 550.
- Williams, G. E., and Bartolina, D. G., 1970, Soil survey of Lincoln County, Oklahoma: U.S. Department of Agriculture, Soil Conservation Service, 57 p.
- Wright, Jack, Pearson, Cynthia, Kurt, E. T., and Watkins, J. W., 1957, Analyses of brines from oil-productive formations in Oklahoma: U.S. Bureau of Mines Report of Investigations 5326, 71 p.

40 Index

INDEX

11 G (P) 1) 1	D (1
Ada Group (Pl. 1),4	Dog Creek (Table 5),34
aquifer tests (Table 1),5	Drumright
Arbuckle Uplift 4	ground-water movement 19
Arkansas River 19	ground-water use (Table 3),22
Barby Creek (Table 5)	trace elements in water supply (Table 7)
Barnsdall Formation 4	Dry Creek (Table 5)
base flow 19-20,34	Eagle Creek (Table 5)
Hilliby Creek 19–20	East Spring Creek (Table 5)
Polecat Creek 19–20	Elm Creek (Table 5)
Bear Creek (Table 5)	entrenched streams 19
Bentall, Ray, cited 5	Euchee Creek (Table 5)
Bingham, R. H., and Bergman, D. L., cited 2	evapotranspiration 19–20,22
Bingham, R. H., and Moore, R. L., cited 2	faults (Pl. 1),4–5
Birch Creek (Table 5)	Figure Eight Creek (Table 5)
Blaney, H. F., and Criddle, W. D., cited 20	Fourmile Creek (Table 5)
Boar Creek (Table 5)	geohydrologic maps (Pl. 3)
brines 25,37	geohydrologic sections (Pl. 1),4
Bristow	geologic map (Pl. 1)
evapotranspiration 20	geologic structure (Pl. 1),4-5,19
hydrologic budget 22	geophysical logs 19,25
precipitation 20	Greig, P. B., cited 2
bromide (Tables 4,5),25,37	ground water
Brown's equation 5	analyses (Tables 4,6,7)
Buck Creek (Table 5)	bromide content (Table 4),25,37
Buckeye Creek (Table 5)	chemical quality (Tables 4,6,7),25,34,36–37
Buffalo Creek (Table 5)	confined (Pl. 2),5,19
Bull Creek (Table 5)	confined hydraulic head 19
Camp Creek (Table 5)	discharge iv,19-20,22
Canadian River 19	geologic control (Pls. 2,3),5
Caney Creek (Table 5)	hydraulic head 19
Carr, J. E., and Marcher, M. V., cited 19	hydrologic measurements (Tables 1,2),5,19
Carter Creek (Table 5)	mineralization 25,34,36–37
Catfish Creek (Table 5)	municipal use (Table 3),22
Cedar Creek (Table 5)	non-potable 25
Clear Creek (Table 5)	occurrence and movement 5,19
Cleveland	overpumping 25 pollution 25
evapotranspiration 20 hydrologic budget 22	potable (Pl. 3),5,19–20,25,37
* *	pumping (Table 3),22,25,37
precipitation 20 climatological stations (Fig. 2),19–20,22	recharge iv,19,22,37
Cochahee Creek, tributary (Table 5)	rural use 22
Coon Creek (Table 5)	semiconfined (Pl. 2),19
Cottonwood Creek (Table 5)	specific conductance (Tables 2,4),25,34
Cowskin Creek (Table 5)	types 25
Creek County	unconfined (Pls. 2,3),5,19-20
ground-water use in 1975 22	unconfined hydraulic head 19
surface-water data (Table 5),34	water table (Pl. 3),19,20
well records (Table 2)	withdrawal (Table 3),22,25,37
Cushing	see also Vamoosa-Ada aquifer
evapotranspiration 20	Ground Water Act iv
ground-water movement 19	ground-water basin legally defined iv
ground-water use (Table 3),22	Hart, D. L., Jr., cited 2
hydrologic budget 22	Hilliby Creek, (Table 5),19-20
precipitation 20	Hilltop Formation 4
trace elements in water supply (Table 7)	Hominy Creek (Table 5)
Deep Creek (Table 5)	homocline (Pl. 1),4
Deep Fork Canadian River (Table 5)	House Creek, tributary (Table 5)
Deep Fork Creek (Table 5)	hydraulic conductivity 5
Deer Creek (Table 5)	hydraulic head
depositional environments of Vamoosa-Ada aquifer	confined 19
4–5	unconfined 19
discharge	hydrographs (Fig. 2),20
ground water iv,19-20,22	hydrologic budget 22
surface water (Table 5),20,36	hydrologic connection 4,19

Index 41

irrigation 22	41- 1 m 11 m
	trace elements in water supply (Table 7)
Johnson, A. I., cited 5,20 Jumper Creek (Table 5)	precipitation (Fig. 2),19-22
	prior rights to ground water defined iv
Kelly, S. F., cited 2,25	Quapaw Creek (Table 5)
Levorsen, A. I., cited 4	Rainbow Creek (Table 5)
Lincoln County	recharge iv,19,22,37
ground-water use in 1975 22	recovery tests (Table 1),5
surface-water data (Table 5)	Red Eagle Branch (Table 5)
well records (Table 2)	Ries, E. R., cited 2
Little Catfish Creek (Table 5)	Rock Canyon Creek (Table 5)
Little Deep Fork Creek (Table 5)	Rock Creek (Table 5)
Little Hominy Creek (Table 5)	rural ground-water use 22
Little River (Table 5)	rural water districts 20
Mahala Creek (Table 5)	Salt Creek (Table 5)
mineralization of ground water 25,34,36-37	Sand Creek (Table 5)
Mosquito Creek (Table 5)	sandstones
Mud Creek (Table 5)	bedding 4-5
municipal water supplies	depositional environments 4-5
trace elements (Table 7),1	
use during 1975 (Table 3),22	grain orientation 5
Negro Creek (Table 5)	grain size 4–5
Nelagoney Creek (Table 5)	lateral distribution (Pl. 2),4-5
	permeability 5
neutron logs 5,20	porosity 20
non-potable water 25	saturated 20,37
North Canadian River (Table 5),19	sorting 4-5
Oakes, M. C., cited 2	thickness (Pl. 2),4-5,20
oil and gas drilling activity 25,37	unconfined 19
Okfuskee County	vertical distribution (Pl. 1),4-5
ground-water use in 1975 22	volume 20
surface-water data (Table 5)	Sandy Creek (Table 5)
well records (Table 2)	Saucy Calf Creek (Table 5)
Oklahoma Department of Public Health 37	Seminole
Oklahoma Statutes Supp. 1973, paragraph 1020.1 et	evapotranspiration 20
seq. iv	ground-water movement 19
Oklahoma Water Resources Board iv	ground-water use (Table 3),22
Osage County	hydrologic budget 22
ground-water use in 1975 22	precipitation 20
surface-water data (Table 5)	
well records (Table 2)	trace elements in water supply (Table 7)
Oscar Group (Pl. 1)	Seminole County
Ouachita Uplift 4	ground-water use in 1975 22
overpumping 25	surface-water data (Table 5),34
Ozark Uplift 4	well records (Table 2)
Pawhuska	shale 5,20
	Shan Creek (Table 5)
evapotranspiration 20	Shelton, J. W., and Rowland, T. L., cited 2
hydrologic budget 22	siltstone 5,20
precipitation 20	site-location method 2
Pawnee County	Smith Creek (Table 5)
ground-water use in 1975 22	Snake Creek (Table 5)
surface-water data (Table 5)	specific capacity 5
well records (Table 2)	specific conductance
Payne County	ground water (Tables 2,4),25,34
ground-water use in 1975 22	surface water (Table 5),25,34
surface-water data (Table 5)	specific yield 5,20
well records (Table 2)	Spring Creek (Table 5)
Penn Creek (Table 5)	storage 19–20,37
Pettiquah Creek (Table 5)	storage coefficients 5
Polecat Creek (Table 5),19-20,34	stratigraphic nomenclature 4
pollution of ground water 25	streams (indexed individually)
porosity 5,20	
potable water (Pl. 3),5,19-20,25,37	see also surface water
Pottawatomie County	Stroud
ground-water use in 1975 22	ground-water movement 19
surface-water data (Table 5)	ground-water use (Table 3),22
well records (Table 2)	trace elements in water supply (Table 7)
well records (Table 2)	study area
Prague	climate 2,4
ground-water movement 19	evapotranspiration 19-20,22
ground-water use (Table 3),22	geologic map (Pl. 1)

42

geologic structure (Pl. 1),4-5	hydrologic budget 22
irrigation 22	hydrologic connection 4,19
location and geography (Fig. 1),2	hydrologic properties 5
precipitation (Fig. 9) 10, 29	outcrop area 19–20,34
precipitation (Fig. 2),19–22	porosity 5,20
runoff 22	recharge iv,19,22,37
vegetation density 20	
see also Vamoosa-Ada aquifer	recharge area 19
Sunset Creek (Table 5)	recovery tests (Table 1),5
surface water	regional dip 5,19
base flow 19-20,34	sandstones (Pls. 1,2),4-5,19-20,37
bromide content (Table 5),25,37	sediment sources 4
discharge (Table 5),20,36	semiconfined (Pl. 2),19
entrenched streams 19	shale 5,20
specific conductance (Fig. 3),(Table 5),25,34,36	siltstone 5,20
Sycamore Creek, tributary (Table 5)	specific capacity 5
Tallant Formation 4	specific yield 5,20
Tanaka, H. H., and Davis, L. V., cited 19	storage coefficients 5
Tanner, W. F., cited 2	theoretical specific capacity (Pl. 2)
Terrell, D. M., cited 2,5	theoretical transmissivity (Pl. 2),5
Theis recovery equation 5	transmissivity iv,5
theoretical specific capacity (Pl. 2)	unconfined (Pls. 2,3),5,19-20
theoretical transmissivity (Pl. 2),5	unconfined hydraulic head 19
Tiger Creek (Table 5)	water table (Pl. 3),19,20
trace elements (Tables 5,7),37	well records (Table 2),5,19
transmissivity iv,5	see also ground water
	see also study area
Turkey Creek (Table 5)	Vamoosa Formation (Pl. 1),2
Twomile Creek, tributary (Table 5)	Vanoss Group (Pl. 1),4
U.S. Environmental Protection Agency (Table 7),37	vegetation density 20
units of measurement 2	
Vamoosa-Ada aquifer	water table (Pl. 3),19,20
aquifer tests (Table 1),5	water types (Tables 4,6),25
chemical quality of ground water (Tables 4,6,7),25, 34,36-37	water use municipal (Table 3),22
confined (Pl. 2),5,19	rural 22
confined hydraulic head 19	well efficiency 5
defined 4	well records (Table 2),5
depositional environments 4–5	West Fork Sandy Creek (Table 5)
geohydrologic maps (Pl. 3)	West Spring Creek (Table 5)
geologic framework 4-5	Wewoka Creek (Fig. 3),(Table 5),34,36
ground-water discharge iv,19-20,22	Wildhorse Creek (Table 5)
ground-water withdrawal (Table 3),22,25,37	withdrawal (Table 3),22,25,37
hydraulic conductivity 5	Wolf Creek (Table 5)
hydraulic head 19	

```
Typefaces: Text in 9- and 8-pt. Century Schoolbook, with
1-pt. leading.
Heads in 10-pt. Century Schoolbook bold and
italic
Figure captions in 8-pt. Helvetica, with 1-pt.
leading
Table heads in 10-pt. Century Schoolbook, caps
and small caps
Running heads in 8-pt. Century Schoolbook bold
Presswork: Miehle 38-inch; covers on Heidelberg 29-inch
Binding: Saddle-stitched, with hardbound and soft-
bound covers
Paper: 70-lb. Mountie Matte
Covers: Hardbound on Gane Linen Holliston Red Cloth
on 160-pt. binder's board
Softbound on 65-lb. Hammermill gray, antique
finish
```